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Microelectronic devices and ICs ex-
perience high radiation levels in 
space, defense, and particle accel-
erator environments. After the in-
vention of the transistor in 1947 [1], 
radiation effects research focused 
primarily on defect creation in semi-
conductor materials and displace-
ment damage in bipolar junction 
transistors [2]–[5]. The sensitivity 
of MOS transistors to total ionizing 
dose (TID) effects was discovered by 
Hughes and Giroux in 1964 [6], just 
one year before Moore’s law was 
postulated [7], [8]. An early and in-
fluential study of TID effects in MOS 
devices was co-authored in 1967 by 
a young Andy Grove, while still at 
Fairchild Semiconductor [9], [10]. 
The modern era of radiation-tolerant 
MOS electronics began in 1971 with 
the development of radiation-hard-
ened pMOS technology by Hughes 
Aircraft Company [8], [11].

Fig. 1 illustrates the chain of events 
that occur during and after TID-irradi-
ation of MOS devices [8], [12], [13]. 
Primary effects include hole transport 
and trapping in gate and isolation 
oxides and buildup of interface and 
border traps at or near gate-dielectric/
semiconductor boundaries. Proton 
(H+) release during hole transport and 
field-induced H+ transport to the Si/
SiO2 interface play critical roles in in-
terface and border-trap formation [8], 
[12], [13].

Moore’s Law scaling and changes 
in device architecture significantly 
affect MOS radiation response [10], 
[14]–[17]. Progressively thinner gate 
and isolation oxides in highly scaled 
devices (Fig. 2) generally lead to en-
hanced TID tolerance (Fig. 3). How-

ever, in current and future generation 
FinFETs (Fig. 2(c)), gate-all-around, 
and nanosheet or forksheet devic-
es, the thickness and quality of the 
gate insulator and isolation oxides, 
transistor channel/edge doping lev-
els, and strength of gate control all 
strongly affect charge trapping [10], 
[14]–[17]. Thus, significant variations 
are expected and observed in the TID 
response of MOS devices and ICs 
[10], [16].

As MOS technologies have 
evolved and device dimensions and 
operating voltages have decreased, 
single-event effects (SEE) due to cos-
mic rays and/or high-energy protons 
have become an increasing concern. 
When a single high-energy charged 
particle deposits a sufficient amount 
of energy per unit path length to 
generate a densely ionized track, soft 
or hard errors can result, with prob-

abilities determined by the amount of 
collected charge and resulting device/
IC response [10], [16], [18]–[20]. Until 
the ~130  nm technology node, SEE 
in electronics in space environments 
typically increased with decreasing 
feature size, as seen in Figs. 4 and 5. 
This is due primarily to reductions in 
operating voltage and critical charge 
to upset [10], [16], [18]–[20]. Fortu-
nately, Moore’s Law scaling greatly 
enhances design, layout, modeling, 
and simulation capabilities, which are 
increasingly necessary to understand 
and mitigate the resulting effects [14], 
[16], [18].

By the mid-1990s, device scaling 
made terrestrial electronics sensi-
tive to soft errors caused by reactions 
of atmospheric neutrons in silicon 
and surrounding materials [21], 
[22]. Removing B10 from process-
ing and changing to FinFET/Tri-Gate 

Figure 1. Schematic illustration of electron-hole pair generation, charge transport, and trapping in 
irradiated MOS devices. (After [8], [12], [13].)
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 architecture (Fig. 5, inset) can greatly 
reduce SERs in ICs [19], [22]. How-
ever, as transistor sensitive volumes 
become smaller than ion tracks and 
transistor packing densities continue 
to increase, multiple-bit errors and 
“charge sharing” among adjacent 
devices become more significant 
[10], [16], [18]. ICs now are more 
three-dimensional, and nanoscale 
MOS devices can be sensitive to 
single-particle displacement damage 
[10], [23]. Thus, each new IC technol-
ogy generation continues to present 
new radiation-effects challenges.
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Figure 3. Hardness of MOS ICs to TID vs. feature size. (After [16].)

Figure 4. Critical ion LET (linear energy transfer) to failure vs. feature size for planar  
bulk and SOI (silicon on insulator) CMOS ICs. The buried oxide layer makes SOI  

devices less sensitive to SEE. (After [16].)

Figure 2. MOS devices with (a) LOCOS (local oxidation of silicon) or (b) shallow-trench isolation, STI [15]. (c) Bulk FinFETs [17].
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Figure 5. Feature size dependence of terrestrial-neutron soft-error rates (SER) in bulk planar 
six-transistor static RAMs and (inset) tri-gate (FinFET) CMOS ICs. One FIT = one failure in 109 h. 

(After [16], [22].)


