75 TH ANNIVERSARY
OF THE TRANSISTOR

MoorE’s LAw ScaLiIng AND RADIATION
EFFects IN MOS DEvICESs

Microelectronic devices and ICs ex-
perience high radiation levels in
space, defense, and particle accel-
erator environments. After the in-
vention of the transistor in 1947 [1],
radiation effects research focused
primarily on defect creation in semi-
conductor materials and displace-
ment damage in bipolar junction
transistors [2]-[5]. The sensitivity
of MOS transistors to total ionizing
dose (TID) effects was discovered by
Hughes and Giroux in 1964 [6], just
one year before Moore’'s law was
postulated [7], [8]. An early and in-
fluential study of TID effects in MOS
devices was co-authored in 1967 by
a young Andy Grove, while still at
Fairchild Semiconductor [9], [10].
The modern era of radiation-tolerant
MOS electronics began in 1971 with
the development of radiation-hard-
ened pMOS technology by Hughes
Aircraft Company [8], [11].

Fig. 1illustrates the chain of events
that occur during and after TID-irradi-
ation of MOS devices [8], [12], [13].
Primary effects include hole transport
and trapping in gate and isolation
oxides and buildup of interface and
border traps at or near gate-dielectric/
semiconductor boundaries. Proton
(H*) release during hole transport and
field-induced H* transport to the Si/
SiO, interface play critical roles in in-
terface and border-trap formation [8],
[12], [13].

Moore’s Law scaling and changes
in device architecture significantly
affect MOS radiation response [10],
[14]-[17]. Progressively thinner gate
and isolation oxides in highly scaled
devices (Fig. 2) generally lead to en-
hanced TID tolerance (Fig. 3). How-
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Figure 1. Schematic illustration of electron-hole pair generation, charge transport, and trapping in
irradiated MOS devices. (After [8], [12], [13].)

ever, in current and future generation
FinFETs (Fig. 2(c)), gate-all-around,
and nanosheet or forksheet devic-
es, the thickness and quality of the
gate insulator and isolation oxides,
transistor channel/edge doping lev-
els, and strength of gate control all
strongly affect charge trapping [10],
[14]-[17]. Thus, significant variations
are expected and observed in the TID
response of MOS devices and ICs
[10], [16].

As MOS technologies have
evolved and device dimensions and
operating voltages have decreased,
single-event effects (SEE) due to cos-
mic rays and/or high-energy protons
have become an increasing concern.
When a single high-energy charged
particle deposits a sufficient amount
of energy per unit path length to
generate a densely ionized track, soft
or hard errors can result, with prob-

abilities determined by the amount of
collected charge and resulting device/
IC response [10], [16], [18]-[20]. Until
the ~130 nm technology node, SEE
in electronics in space environments
typically increased with decreasing
feature size, as seen in Figs. 4 and 5.
This is due primarily to reductions in
operating voltage and critical charge
to upset [10], [16], [18]-[20]. Fortu-
nately, Moore's Law scaling greatly
enhances design, layout, modeling,
and simulation capabilities, which are
increasingly necessary to understand
and mitigate the resulting effects [14],
[16], [18].

By the mid-1990s, device scaling
made terrestrial electronics sensi-
tive to soft errors caused by reactions
of atmospheric neutrons in silicon
and surrounding materials [21],
[22]. Removing B;,, from process-
ing and changing to FinFET/Tri-Gate
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Figure 2. MOS devices with (a) LOCOS (local oxidation of silicon) or (b) shallow-trench isolation, STI [15]. (c) Bulk FinFETs [17].

Figure 3. Hardness of MOS ICs to TID vs. feature size. (After [16].)

Figure 4. Critical ion LET (linear energy transfer) to failure vs. feature size for planar
bulk and SOI (silicon on insulator) CMOS ICs. The buried oxide layer makes SO/
devices less sensitive to SEE. (After [16].)
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architecture (Fig. 5, inset) can greatly
reduce SERs in ICs [19], [22]. How-
ever, as transistor sensitive volumes
become smaller than ion tracks and
transistor packing densities continue
to increase, multiple-bit errors and
“charge sharing” among adjacent
devices become more significant
[10], [16], [18]. ICs now are more
three-dimensional, and nanoscale
MOS devices can be sensitive to
single-particle displacement damage
[10], [23]. Thus, each new IC technol-
ogy generation continues to present
new radiation-effects challenges.
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Figure 5. Feature size dependence of terrestrial-neutron soft-error rates (SER) in bulk planar
six-transistor static RAMSs and (inset) tri-gate (FinFET) CMOS ICs. One FIT = one failure in 10° h.
(After [16], [22].)
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