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Abstract. Cyclic motions such as running or walking are difficult to animate
because limitations in time and technology often result in only a small number
of distinct cycles being produced. These few cycles are then repeated to create
an animation of the desired length. Unfortunately, the repetitiveness of the re-
sulting motion often appearsunnatural. This paper seeks to fix this problem by
determining how to introduce natural-looking variability into cyclic animations
of human motion. We construct a noise function based on biomechanical consid-
erations that introduces natural-looking perturbations in a base running motion
produced either by dynamic simulation or from motion capture data. We evaluate
our results through human subject testing.

1 Introduction

Creating appealing humanoid animations is a difficult and time-consuming task. Cyclic
motions such as running or walking are particularly hard to animate because limitations
in time and technology often result in only a small number of distinct cycles being
produced, whether the method is keyframing, motion capture, or simulation [18]. These
few cycles are then repeated to create an animation of the desired length. Unfortunately,
the repetitiveness of the resulting motion is often noticeable and no matter how high the
quality of the individual cycle, the resulting stream of animation appears unnatural.

For example, if a running motion is created through motion capture, it should look
realistic, because it was obtained from a real person. But the limited field of view of
most motion capture equipment means that only a few strides of running over ground
can be obtained. If an extended sequence of running is required, the repeating cycle will
quickly become obvious. A run could be videotaped and rotoscoped with an animator
adding in variations of the motion, but that requires an animator to edit the motion, and
controlling the support of the foot becomes problematic. Simulations of running can
also appear repetitive: the control system attempts to maintain a steady-state running
pattern and therefore it reduces the variability of the running motion. Even with a com-
plicated simulation such as a full-body dynamic model with many controlled degrees of
freedom, a good control system produces cyclic motion with little variability between
strides.

This paper seeks to fix this problem by determining how to introduce natural-
looking variability into cyclic animations of human motion. We assume that variability



is noticeable and wehypothesize that a motion that possesses it looks more natural.
From a biomechanical perspective, a fundamental attribute of biological systems is that
motion varies from performance to performance. We leverage some of the biomechani-
cal research on variability and incorporate it into our work. In this framework, introduc-
ing variability into animations equates to modifying the trajectories of the joint degrees
of freedom from their nominal values, and can be viewed as adding a type of noise to
the animation. Our experiments are confined to running motions, in part because ani-
mating a convincing run is extremely difficult, and in part because running is a more
constrained activity than walking. Through human subject testing, we seek to answer
the question of whether adding noise produces a more natural-looking animation, and
if so, how much and what type of noise should be added.

We make a distinction in this paper between variability in a motion and the style
of a motion. Style is a measure conveying the difference between the motion of two
subjects or the overall emotional expressiveness of a motion, while variability is a mea-
sure conveying the changes between repetitions of a task. A clear example of a stylistic
difference in motion would be a dejected walk as compared with a buoyant walk; an
example of variation in a walk would be the arm occasionally brushing against the
torso. Stylistic differences are very interesting from an animation perspective (see, for
example, [17, 1, 21]), but our concern in this paper is with variability.

In the next section, we review the background literature in this subject. We then de-
scribe and compare various types of noise which might be introduced to a simulation or
motion capture data to add variability to the motion, and explain how we introduce the
noise into our system. Section 4 discusses the experimental design we used to evaluate
the resulting animations with human subjects. Finally, we evaluate our results and try
to place them in the larger context of generating realistic animations.

2 Background

Variability in human movement has been explored by biomechanists, particularly in the
study of motor control and skill acquisition [14]. Variability in movement has been a
problem of long-standing interest: the first variability studies were performed by Wood-
worth [23] in 1899, who studied the variation in the back-and-forth movement people
made when repeatedly moving a pencil through a slit to the beat of a metronome. With
their eyes closed, subjects had errors that were approximately constant with respect to
velocity; with their eyes open, the errors increased with velocity.

In 1954, Fitts [9] conducted experiments in which people moved a stylus between
two targets as rapidly as possible, where the distance between the targets and the size
of the targets varied. His experiments demonstrated a logarithmic relationship between
movement duration, accuracy, and movement time:

T = a+ b log
2

�
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�
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whereT is the movement duration,D is the movement distance,W is the target width
(thus providing the notion of accuracy), anda andb are experimentally determined con-
stants. Equation 1 is known as Fitts' Law. It holds for a large class of aiming-related



movements, but it does not hold for all classes of movements: for some types of move-
ment there is a linear relation between speed and accuracy [20, 24]. Schmidtet al. [20]
refined Fitts' Law by performing experiments where subjects were asked to minimize
the variability of their movements in a prescribed amount of time. Schmidt and his
collaborators observed that the standard deviation of the movement of the endpoints,
i.e., the variability, denoted byWe, increased with the distance of the movement and
decreased with the time of movement:

We = k
D

T
(2)

wherek is an experimentally determined constant. Zelaznik [24] observes that move-
ments that do not use feedback-based corrections will not exhibit a logarithmic relation-
ship between speed and accuracy, but rather a linear one. So, for example, most aiming
movements or movements where precise end effector placement is required obey Fitts'
Law; movements where the velocity is constrained obey a linear speed-accuracy trade-
off. Interestingly enough, Woodworth's original experiments were velocity-constrained.
These relationships represent fundamental limitations on the control of human move-
ment; while biomechanicists use them to investigate the processes of skill development
and task performance (for example, [13]), we will use them to introduce realistic vari-
ability into our simulations.

We will treat the variability of an individual degree of freedom as independent of
other degrees of freedom, although Arutyunyanet al. [2, 3] have shown that in experi-
enced marksmen aiming a pistol, the shoulder and wrist joint degrees of freedom are
reciprocally covarying, resulting in lower endpoint variability of the pistol tip. Nonethe-
less, treating the degrees of freedom as independent probably represents a reasonable
approximation for less precisely coordinated movements.

Modifying existing animation to produce different characteristics is not new. Our
focus in this work is not on motion editing such as that of Bruderlin and Williams [6] or
Witkin and Popovi´c [22], but is more closely related to the works of Unumaet al. [21],
Amayaet al.[1], and Roseet al.[17]. They alter existing animation to produce different
stylistic or emotive motions. While these researchers produce animation that is quite
compelling, for a fixed style of movement their animations will also be repetitive. We
are focused on improving an existing cyclic stream of animation, and thus this work
could be added as a postprocess to the works above.

Perlin [15,16] has used noise to provide personality to animations. Through the ad-
dition of what he terms “coherent noise,” he is able to convey small motions such as
those of a character blinking, directing their gaze around a room, or maintaining bal-
ance. This work is inspirational for our own, but differs from it in that it is a system for
scripting motions. An animator tunes the noise functions to convey the proper gestures
or emotion. Perlin's results are impressive, and a generalization of our results might
provide insight into what noise functions should be included with his system.

3 Construction of the Noise Function

We consider only types of noise that can be added to articulated rigid-body figures.
Thus, we consider only types of noise that can be used to change a joint angle's tra-



jectory over time, and ignore variations that would change a figure's limb lengths, for
example. This limitation is not too restrictive, because it applies to mostdynamic sim-
ulations, most uses of motion capture, and many types of keyframed animation. Addi-
tionally, we only add noise to the arm degrees of freedom of a human runner. Noise
could be added to other joints, although adding motion to the legs of a simulated runner
might interfere with balance, or lead to foot slippage in a motion captured or keyframed
runner. Note that changing the trajectory of the arm swing can impart movement to the
rest of the body; the control system will attempt to minimize this disturbance but it will
produce some variability throughout the body. Becausedynamic simulations produce
physically correct motion, they generally place the most constraints on the ways a joint
angle trajectory can be perturbed. Thus, we first consider the types of noise that can be
added to a simulation, and later explore how these types apply to the other methods of
animation. The simulations our work is based on were described by Hodginset al.[11].

Noise can be added into a simulation in a variety of different ways, e.g., by adding
noise to the sensors, to the control gains, to the output torques, or via disturbances in
the surrounding environment such as uneven terrain. Adding disturbances to the sur-
rounding environment is important for applications where characters need to interact
with their environment, but changing the terrain model randomly is unappealing for
many applications. Perturbing the control gains has thea priori objection that it will
change the robustness of the system, possibly leading to instability (the character will
“fall down”). As a result, we only add noise to the sensors or perturb the output torques.

The equation for the output torque for each degree of freedom of the simulation is
given by

� = k(�d � �) + kv( _�d � _�) (3)

where� represents the torque of the internal joint,� is the joint angle,�d is the desired
joint angle, _� and _�d are their respective velocities, andk and kv are control gains.
Equation 3 describes a typical proportional-derivative servo. If we perturb the output
torques, Eq. 3 becomes

� = k(�d � �) + kv( _�d � _�) + �p (4)

where�p represents the perturbation. If we add sensor noise, then Eq. 3 becomes

� = k(�d � � � �p) + kv( _�d � _�) (5)

where�p represents the sensor noise.
We experimented with using both Eqs. 4 and 5 in generating simulations, and found

that perturbing the torques directly did not lead to satisfactory motion. An intuitive
explanation of why this occurs may be that the control system is constantly correcting
for the effect of the torque perturbation on the previous time step. To be visible, the
torque perturbations must be substantial and the resulting motion appears jerky and
unnatural. Equation 5, on the other hand, changes the desired angles and therefore works
with the control system to produce motion that is much smoother and more natural
looking.



3.1 Types of Noise

Many different types of noise exist in nature, and we considered three types. White
noise is noise that is uniformly distributed and uncorrelated, of a limited amplitude. This
definition differs from that commonly employed by physicists and engineers, where the
distribution is most often normal (a consequence of the central limit theorem) and the
amplitude is unlimited (for a discussion, see [12]). Examples of white noise abound in
nature; one such example is the noise of a waterfall. Another type of noise is sinusoidal
noise similar to that used by Perlin. This noise varies sinusoidally in both frequency and
amplitude and can be thought of as a modulated wave pattern. Examples of this type of
noise in nature would be sand ridges formed by wind or currents; see, for example, the
pictures and discussion in [8]. Code to generate this type of noise can be found in [19].
Examples of both these types of noise are shown in Fig. 1.
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Fig. 1. Examples of white and sinusoidal noise. White noise is shown in the left plot and sinu-
soidal in the right.

A priori, both of these noise types seemed reasonable to add to a simulation via
Eq. 5. However, if the magnitude is a significant fraction of the magnitude of the original
motion, these noise types produce motion which appears odd because the perturbations
have no contextual relation to the larger movements of the body, such as arm swing.
People do not usually exhibit sizeable twitches and jerks when they are moving; human
variability is usually correlated to the larger movements of the body [7]. Thus, our
perturbations should also be correlated.

The final type of noise we considered was a continuous noise function with its
maximum amplitude occurring at the extrema of a degree of freedom during a cycle.
The value of the maximum amplitude is a white noise process as described earlier.
This perturbation has the advantage of always occurring in phase with the movement
of the body. The perturbation could have any wave form with such a characteristic
amplitude; we chose to use either a sinusoid or a triangle wave. For a simulation, the
control system smoothes the triangle wave so that there is no perceptible difference
between it and a sinusoid; a sinusoid is more appealing for use with motion capture
data where no smoothing occurs. An example of this type of noise together with the
shoulder trajectory is shown in Fig. 2. In this figure, the solid line is the sum of the two



non-solid lines and represents the desired value that the control system is attempting to
track. Informal tests led us to believe that this type of noise leads to visually appealing
motion, and we tested our hypothesis with the user studies presented in Section 4.
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Fig. 2. An example of a perturbation in phase with they (forwards/backwards) rotation of the
shoulder.

3.2 Scaling the Noise

We must determine the appropriate maximum amplitude of the perturbation for each
degree of freedom. To facilitate tests with human subjects, we also need to have one
scaling control that determines the amount of noise for all degrees of freedom. The
choice of scaling represents a secondary control on how variability is added into the
simulation. A uniform scaling will not work because the amount of rotation abouteach
degree of freedom is not the same. For example, the forward and backward swing (y)
of the shoulder rotates through a much greater angle than the left and right rotation rep-
resented byx (see Figs. 3 and 4). Adding the same amount of noise toeach degree of
freedom would either result in no noticeable effect on they rotation, or an abnormally
large effect on thex rotation. Thus, we base our scaling law on the biomechanical obser-
vation expressed by Eq. 2: the greater the movement distance, the greater the variability
in the movement. As a result, noise is scaled for each degree of freedom based on the
magnitude of the trajectory of the unperturbed degree of freedom.

This scaling law was applied to a simulation of a male runner and a female runner.
These examples are discussed further in Section 5 and 6, but the scalings for the ex-
amples are shown in Table 1. The wrist is simulated with two degrees of freedom. Its
joint angle trajectories would have given it slightly more noise than the elbow. However,
adding noise to the wrist produced no perceptible variation in the motion, and reduced
the maximum amount of noise that could be added to the simulation before it became
unstable, so we neglected it.



Fig. 3. The coordinate systems of the joints in
the simulated runner.
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Fig. 4. The zxy Euler angles for the right
shoulder of the male runner simulation.

Male SimulationFemale Simulation
Shoulderx 0.23 0.21
Shouldery 1.00 1.00
Shoulderz 0.07 0.09
Elbowy 0.11 0.09

Table 1.The scaling relationships for the arm degrees of freedom for the male and female simu-
lations.



4 Experimental Design

Our goal was to design an experiment that gave a test subject the ability to vary the
amount of noise in the simulation and decide what level of noise appeared most “natu-
ral.” For each simulation we constructed 10 MPEG animations of running motion,each
10 seconds long. The amount of noise present ineach animation was linearly increased
from zero to an experimentally determined maximum. This maximum was the amount
of noise that a 10 second simulation could tolerate without falling down. The noise was
generated using a random number generator that was seeded at the beginning ofeach
set of ten animations. The animations were presented to the users on an SGI R10000
O2 machine and ran at 30 frames per second. The users could view the animations as
many times as they wished, in any order, before deciding which animation appeared the
most natural. Samples of the animations are shown in Figs. 6 and 7 (see Appendix) for
the male and female simulations, and the MPEG movies can be found at [10]. In most
of the comparison frames, the arm configuration varies due to the addition of the noise.
However, in the middle images of Fig. 6, the legs have a different configuration even
though they are not directly perturbed.

5 Results

We will usex̂ to denote the mean of an experiment withn subjects, andSx to denote
the standard deviation of the experiment. Assuming the underlying distribution of the
samples is Gaussian, the 95% confidence interval is defined as the interval within which
the true mean value� of the population will lie with probability 0.95, and is computed
from thet-distribution [4]. Using at-test, two experiments can be compared based on
their sample means [4], or on their confidence intervals [5].

Exp. No.No. of Subjects x̂ Sx Mode 95% confidence interval
1 30 3.132.06 3 [2.376,3.890]
2 10 4.002.31 5 [2.372,5.627]
3 10 3.202.152,3 (tie) [1.169,4.715]

All 50 3.322.112,3 (tie) [2.720,3.920]

Female 30 3.072.431,6 (tie) NA

Table 2.The statistics for three different experiments with the male running simulation, the com-
bined results, and an experiment with the female running simulation.

For each of three different seeds of the random number generator, we created ten an-
imations of the male runner with varying degrees of noise, as described above. We then
conducted three different experiments with different subjects. The meanx̂, standard de-
viationSx, mode, and 95% confidence intervals for the individual experiments and for
the combined results are shown in Table 2. Although the distributions appear different,
for example, between experiments 1 and 2, the confidence interval of the 30 subject
test lies within the confidence interval of the 10 subject test, and at-test of the means
reveals that there is not a significant difference of the means at a 95% confidence level.



All experiments are consistent based on their confidence intervals, and this measure of
correspondence provides a stronger measure than simply comparing the means [5].

The numbers chosen by the subjects can be translated into amplitudes of the noise
function and related to the peak-to-peak amplitudes of joint rotations. For the male run-
ning simulation, the largest joint rotation is they rotation of the shoulder (from Table 1).
They shoulder trajectory with no noise averages a peak-to-peak value of 1.5 radians.
The scale factor for they shoulder rotation is 1.0. The maximum amount of noise the
simulation could tolerate for 10 seconds was 0.65 radians peak-to-peak, or about 45% of
the nominal peak-to-peak value. Thus, the answer “3” in our experiment corresponds to
a maximum noise amplitude of about 15% of the peak-to-peak value of the largest joint
rotation, or about 0.23 radians peak-to-peak. If we assume that perception of noise is
approximately linear in a local region, then the mean of the 50 subject test corresponds
to a noise level of 17%, or about 0.25 radians peak-to-peak.
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Fig. 5.Distributions of subject choices for the experiments. See Table 2.

6 Discussion

We have devised a noise function that introduces variability into the simulation and
have shown that for the male running simulation most users prefer some noise (about
30% of the stability limit or 17% of the peak-to-peak amplitude of the largest joint
trajectory) over no noise or higher amounts of noise. This result is encouraging because
the control system for the running simulation is robust enough to be stable (run without
falling down for 100 seconds) at this noise setting, yet the noise setting is enough to
produce perceptible variability over shorter lengths of animation than the ones used in
the subject test. Anecdotal evidence from the comments of the subjects indicates that
many people find that no noise or low levels of noise look too stiff, while large levels of
noise appear unnatural. Additionally, some subjects made remarks like “This (number)
looks best for a trained runner; this (other number) looks best if I knew the runner were



out of shape.” Hence, variability may be dependent on style, and an investigation of the
boundaries between variability and style could prove interesting.

A good additional test of the validity of these results would be to use�2 tests to
determine how closely our distribution approximates a normal distribution [5]. Unfor-
tunately, these tests are limited for the numbers of subjects we have tested. Other exper-
imental designs, such as A/B comparisons, or perhaps A/B/C comparisons, might also
provide insights into what noise function creates a natural-looking motion.

An interesting avenue of research would be to try to incorporate variability into
stylistic animations such as those of [17]. Based on the test results from the male run-
ning simulation, we would start by perturbing these stylized animations using our scal-
ing law and adding about 17% of the average peak-to-peak amplitude of the largest joint
rotation to the animation. We believe that this amount of noise would represent a good
starting point for further tuning.

Unfortunately, the results with the male simulation do not seem to generalize to the
simulation of the female runner. We generated ten animations of the female runner and
conducted experiments using thirty subjects. Sample poses are shown in Fig. 7 (see
Appendix) and the results summarized in Table 2. This distribution is bimodal. Many
subjects prefer a slight amount of noise but many subjects also prefer a large amount
of noise. This result is perplexing, for although it tells us that users tend to prefer some
variability in their animations, it does not provide any guidelines for how much noise
should be reasonably added, and indicates that intermediate values of noise may be
deleterious. One hypothesis is that the control system for the female runner produces
less natural-looking motion and the addition of noise is not addressing the fundamental
problem with the motion. We are currently investigating this result further.

There are other types of perturbations than those we have considered here. For
example, we could model the variability people actually exhibit by analyzing several
motion capture sequences from a single runner or sequences from multiple runners.
Additional user studies would be required to assess whether these data-based models
produced more natural-looking motion. Finally, we have only tested running with these
experiments, and broadening our study of variability to other types of motions is im-
portant.
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22. WITKIN , A., AND POPOVIĆ, Z. Motion warping. InComputer Graphics(Aug. 1995),
pp. 105–108. Proceedings of SIGGRAPH 95.

23. WOODWORTH, R. S. The accuracy of voluntary movement.Psychological Review 3(1899),
1–114.

24. ZELAZNIK , H. N. Necessary and sufficient conditions for the production of linear speed-
accuracy trade-offs in aimed hand movements. InVariability and Motor Control, K. M.
Newell and D. M. Corcos, Eds. Human Kinetics, Champaign, IL, 1991, pp. 91–115.



Fig. 6.Example frames of the male simulation with and without noise. The top row shows various
poses without noise; the bottom row shows analogous poses with noise (Bodenheimeret. al.).

Fig. 7. Example frames of the female simulation with and without noise. The top row shows
various poses without noise; the bottom row shows analogous poses with noise (Bodenheimeret.
al.).


