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ABSTRACT
This paper explores a method for re-sequencing an existing set of
animation, specifically motion capture data, to generate new mo-
tion. Re-using animation is helpful in designing virtual environ-
ments and creating video games for reasons of cost and efficiency.
This paper demonstrates that through nonlinear dimensionality re-
duction and frame re-sequencing, visually compelling motion can
be produced from a set of motion capture data. The technique pre-
sented uses Isomap and ST-Isomap to reduce the dimensionality
of the data set. Two distance metrics for nonlinear dimensionality
reduction are compared as well as the effect of global degrees of
freedom on the visual appeal of the newly generated motion.
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1. INTRODUCTION
Designing a rich repertoire of behaviors for virtual humans is an

important problem for virtual environments and computer games.
Traditionally, animation is generated for these environments through

keyframing, motion capture, or dynamic simulation. Dynamic sim-
ulation is a computationally expensive process that has so far been
limited by difficulty in designing controllers for behaviors. The
main drawback of animation technology such as keyframing and
motion capture is lack of flexibility in re-using or editing the ani-
mation. What is keyframed or captured is difficult to use in new
contexts.

This paper investigates methods for re-using animation data to
generate new motion. Given an existing library of data, the problem
is to rearrange the individual frames of motion into a new motion
that is visually appealing. To accomplish this, we employ tech-
niques of nonlinear dimensionality reduction to extract a parame-
terization of the data. Most animation data has over 40 degrees of
freedom, and is thus contained spatially in a 40+-dimensional vec-
tor space. We assume that a body of coherent animation data, i.e.,
human motion, describes a low dimensional manifold that is em-
bedded in this high-dimensional space. By parameterizing the man-
ifold, we develop the ability to traverse the data in a non-sequential
manner while maintaining coherence among the poses, thus gener-
ating new poses.

This paper explores two techniques for nonlinear dimensionality
reduction, Isomap and ST-Isomap. These techniques are better able
to capture the underlying manifold of a complicated articulated fig-
ure than traditional linear methods such as Principal Component
Analysis. We also examine the use of different distance metrics to
characterize distances in the higher dimensional space. Our results
show ST-Isomap to be preferable to Isomap due to its incorpora-
tion of temporal information. In addition, we find the inclusion
of global degrees-of-freedom in the reduction to be more visually
compelling in free-form motions such as dancing, whereas in cyclic
locomotion such as walking they are better omitted.

The paper is organized as follows. In Section 2 we provide back-



ground information on this area of animation, nonlinear dimension-
ality reduction, and distance metrics. In Section 3 we describe the
techniques used to evaluate a body of animation data. Finally, in
Section 4 we discuss these results and provide directions for future
work.

2. BACKGROUND
In this section we place our work in context.

2.1 3D Animation Re-Sequencing
Motion capture research has concentrated on studying ways of

editing and modifying existing motions. See Gleicher[4] for a sur-
vey of work in this area. As mentioned previously, work in mini-
mizing the amount of manual editing needed for using motion cap-
ture has been approached in two primary ways: through the use
of probabilistic methods that synthesize new motion and through
methods that re-use the original data for synthesis.

In contrast, other researchers have drawn inspiration from the
work of Schödl et al. [15] on video textures to retain the origi-
nal motion sequences but play them back in non-repetitive streams.
Video textures is similar to our goal of re-sequencing animation
data, specifically the “video-based animation” section of their work,
although it is an image-based technique and does not directly gen-
eralize to 3D animation data. They use the L2 distance to compute
the differences between frames for building the video structure. We
want to compare the differences between frames in a similar fash-
ion to analyze the data for re-sequencing. Schödl et al. [15] assume
a large data set with incremental changes between frames. In their
follow-up work [14], they use user-directed video sprites for creat-
ing new character animations.

For 3D motion data, Sidenbladh et al. [17] employ a probabilistic
search method to find the next pose in a motion stream and obtain
it from a motion database. Arikan and Forsyth [1] construct a hier-
archy of graphs connecting a motion database and use randomized
search to extract motion satisfying specified constraints. Kovar and
Gleicher [7, 8] use dynamic programming to locally parameterize
large data sets of motion and to construct a directed graph of mo-
tion that can be traversed to generate different styles of motion. Lee
et al. [11] model motion as a first-order Markov process and also
construct a graph of motion. They demonstrate three interfaces for
controlling the traversal of their graph.

One of the features of this body of research is that they employ
different underlying cost metrics for evaluating transition points in
the graph. Lee et al. use a cost function based on joint orientations
and velocities. Kovar et al. use a cost function based on the distance
between point samples of the mesh representation of the character.
Arikan and Forsyth use a hybrid method similar to that of Lee but
involving joint accelerations as well. Sidenbladh et al. use a prob-
abilistic search method. In our work, we will use the L2 distance
between orientations of the articulated figure and compare it to the
metric of Lee et al. However, we modify the weights used in the
Lee metric according to the results of [19].

2.2 Dimensionality Reduction
Dimensionality reduction for large data sets seeks to describe a

high-dimensional vector space in a low-dimensional embedding.
A commonly used dimensionality reduction method is Principle
Component Analysis (PCA) [6], a linear embedding technique that
generates mean data and eigenvectors that span the principle shape
variations in the data space. However, this technique does not re-
tain the spatio-temporal structure in the data that we are seeking.
We assume our data have some underlying spatial surface (mani-
fold) for which we wish to discover an embedding into a lower-

dimensional space. Multidimensional scaling (MDS)[10] is an-
other approach that finds an embedding that preserves the pairwise
distances, equivalent to PCA when those distances are Euclidean.
However, many data sets contain essential nonlinear structures that
are invisible to PCA and MDS.

Two techniques for manifold-based nonlinear dimensionality re-
duction are Isomap [18] and Locally Linear Embeddings (LLE)
[13]. Both methods use local neighborhoods of nearby data to find a
low-dimensional manifold embedded in a high-dimensional space.
However, neither of these methods account for temporal structure
in animation. A modified version of Isomap, called Spatio-Temporal
Isomap (ST-Isomap) [5], can account for the temporal dependen-
cies between sequentially adjacent frames. We borrow the idea
of extending Isomap using temporal neighborhoods from [5], and
use ST-Isomap for dimensionality reduction of animation data to
maintain the temporal structure in the embedding. Jenkins and
Matarić [5] focus on synthesizing humanoid motions from a mo-
tion database by automatically learning motion vocabularies. Start-
ing with manually segmented motion capture data, ST-Isomap is
applied to the motion segments in two passes, along with cluster-
ing techniques for each of the resulting sets of embeddings. Motion
primitives and behaviors are then extracted and used for motion
synthesis.

3. METHODS
Isomap and ST-Isomap work by computing a distance matrix be-

tween all pairs of input data. ST-Isomap adjusts this distance matrix
to account for temporal neighbors. Both algorithms next estimate
the geodesic distances (distances along the manifold, as opposed to
in the high-dimensional space) by computing the all-pairs shortest
paths from the original distance matrix. MDS is then applied to
construct a lower dimensional embedding of the data. So for our
work, motion capture data is preprocessed and the distance matrix
is computed. Then, nonlinear dimensionality reduction is used to
understand the structural aspects of the data. The shortest cost path
is computed between the start frame and the end frame, and the
data is re-sequenced using this shortest cost path.

3.1 Pre-Processing Motion Capture Data
Our data set consists of three sets of motion capture data taken

from the motion capture data at Carnegie Mellon University [3],
and the Georgia Institute of Technology. The first set of motion
depicts a walking human and is 516 frames long. The second set
of motion represents a running human and is 405 frames in length.
The third set of motion is that of a human dancing in a hip-hop
style and is 800 frames long. Motion capture data is temporal data
depicting the animation of an articulated figure consisting of rigid
bodies connected by joints [2]. The orientation of the joints is rep-
resented by a quaternion for each joint [16]. Each joint typically
expresses three degrees of freedom for the articulated figure. In ad-
dition, there are six additional degrees of freedom corresponding to
a global position (three) and global orientation (three).

As mentioned above, quaternions are used to represent orien-
tation. However, nonlinear dimensionality reduction tools assume
metrics in Euclidean space. Therefore, to use such tools, the quater-
nions must be linearized into vectors. This step is accomplished us-
ing a technique described by Lee and Shin [12]. In this technique,
quaternions are projected onto the tangent space of the quaternion
sphere determined by a pre-selected quaternion, as depicted in Fig-
ure 1. For each joint k, given a sequence of quaternions {qi,k}n

i=0,
the projection of each quaternion into Euclidean space (the tangent



Figure 1: Depiction of the method for linearizing quaternions.
A candidate quaternion, denoted by q0, is selected and the tan-
gent space to the quaternion sphere is formed. Other quater-
nions (qi) are projected into the tangent space yielding a vector
vi.

space of the quaternion sphere at q0,k) is given by

νi,k =
i−1X

j=0

log
`
q−1

j,kqj+1,k

´

where νi,k is the vector, or the linearized quaternion, for joint k
at frame i. All joint angles for every frame are linearized in this
fashion. Let m represent the number of joints for a particular set of
data, and let n be the number of frames for that data set. The vectors
resulting from this operation are formed into a 3m×n matrix. Each
column of the matrix contains n vectors, each representing a joint,
stacked consecutively. Thus, each column of the matrix represents
a frame of motion. We will denote the ith column or frame as Vi in
the following.

3.2 Distance Metrics
The input distance matrix for the nonlinear dimensionality re-

duction tools is now computed. Each entry of the distance matrix
is given by Dij = ||Vj − Vi||, where the norm is described be-
low. An important aspect of the dimensionality reduction process
is the creation of this matrix. We use two different distance metrics
(norms), the L2 distance and the Lee distance [11], to compute the
local neighborhoods. The L2 distance is simply the Euclidean dis-
tance between two frames considered as vectors. The Lee metric is
more complicated. Given two frames i and j, the Lee distance is
computed

Dij = d(pi, pj) + d(vi, vj) (1)

where d(vi, vj) is the weighted distance of joint velocities, ν weights
the velocity difference with respect to d(pi, pj), and d(pi, pj) is the
weighted difference of joint orientations. This term is given by

d(pi, pj) = ‖pi,0 − pj,0‖2 +
mX

k=1

wk

‚‚log
`
q−1

j,kqi,k

´‚‚2
. (2)

Right and Left Hip 1.0000
Right and Left Knee 0.0901
Right and Left Shoulder 0.7884
Right and Left Elbow 0.0247

Table 1: Joints with non-zero weights for the Lee distance met-
ric. The weights on other joints are set to zero.

Motion
Global
Orienta-
tion

Reduction
Method

Distance
Metric

Number
of k-
nearest
neighbors

Hip-Hop Included Isomap L2 22
ST-Isomap L2 1

Isomap Lee 1
ST-Isomap Lee 1

Walk Excluded Isomap L2 79
ST-Isomap L2 79

Isomap Lee 3
ST-Isomap Lee 1

Run Excluded Isomap L2 107
ST-Isomap L2 107

Isomap Lee 7
ST-Isomap Lee 1

Table 2: Minimum number of nearest neighbors to achieve a
connected component for the motion datasets and dimensional-
ity reduction method. Also noted is whether the global degrees
of freedom are included in the dimensionality processing.

In Equation 2, pi,0, pj,0 ∈ R3 are the global translational posi-
tions of the figure at frames i and j, respectively; m is the number
of joints in the figure; qi,k, qj,k are the orientations of joint k and
frames i and j, respectively, expressed as quaternions. The log-
norm term represents the geodesic norm in quaternion space, and
each term is weighted by wk. We use the optimal weights deter-
mined by Wang and Bodenheimer [19] and shown in Table 1. The
velocity term, d(vi, vj), is computed similarly.

3.3 Dimensionality Reduction
An important question in re-sequencing motion capture data is

how to handle global degrees of freedom. Thus, for input into
Isomap and ST-Isomap, we examine the effects of including and
excluding the global degrees of freedom. To find a path in the em-
bedding from a start frame to an end frame, it is necessary to have
one connected component in the embedding. What this means is
that the nearest neighbor distances in the higher-dimensional space
are not “too large.” As a result, the number of k-nearest neighbors
is set to the minimum size needed to achieve this specification. This
number is discovered through trial-and-error. The number of near-
est neighbors is shown in Table 2.

The resulting embedding structure for the hip-hop dancing mo-
tion analyzed using ST-Isomap is shown in Figure 2. In this figure,
each node of the graph represents a frame of data, with its con-
nection structure as determined by the distance metric and pairwise
distance matrix. It is clear that there is considerable structure in the
data. Figure 3 shows the residual variances (error) if the high di-
mensional data is represented as a manifold of dimension d. In this
case the optimal dimension is four, although Figure 2 necessarily
shows a two-dimensional representation.
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Figure 2: The ST-Isomap structure for the hip-hop dancing mo-
tion with global degrees of freedom included. The red circles
indicate a frame of data and the blue lines show connectivity
information as determined by the distance matrix.
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Figure 3: The residual variances for the ST-Isomap dimension-
ality reduction. The horizontal axis represents a candidate em-
bedding dimensionality.

3.4 Shortest Cost Path and Re-Sequencing
To generate the re-sequenced motion, the Isomap or ST-Isomap

embedding is traversed from a given start frame to a given end
frame. If needed, keyframes from the data are added to make the
length of the total motion sequence appropriate. Dijkstra’s algo-
rithm is used to compute the shortest cost path from one frame to
another. This path is an array of frame numbers corresponding to
frames in the original motion. These resulting frames are then ex-
tracted from the initial motion and played back.

4. RESULTS AND DISCUSSION
This paper has explored the use of nonlinear dimensionality re-

duction techniques to re-sequence animation. The main issues that
we encountered are the inclusion or exclusion of global degrees of
freedom, the use of Isomap or ST-Isomap as a nonlinear dimension-
ality reduction tool, and the selection of a distance metric, either
the L2 metric or the more sophisticated Lee metric. We examined
the results of these issues with three sets of motion capture data:
a hip-hop dancing motion, a walking motion, and a running mo-
tion. Including global degrees of freedom appears to work well for
only free-form motions. Free-form motions are defined as motions
for which people do not hold an a priori expectation of the next
move. Examples of such motions include martial arts, boxing, and
dancing. In contrast, cyclic linear motions are characterized by the
animated figure moving in only one direction with a single move-
ment repeated several times. Examples of such motions include
walking and running.

Including global degrees of freedom for cyclic linear motions
hurts the smoothness and visual appeal of the re-sequenced motion.
Frames in the shortest cost path are generally not in the same order
as they are in the original motion, thereby causing the figure to slide
from the background to the foreground multiple times. However,
including the global degrees of freedom for free-form motions ap-
pears to improve their visual coherence. Because the figure is not
expected to move in any particular direction at any time, the vary-
ing order of the frames does not destroy the visual appeal of the
motion. In fact, including the global degrees of freedom keeps the
figure from being pinned to one location and enhances the look of
the motion.

For animated data, we believe ST-Isomap is a better choice than
Isomap. Sometimes, Isomap and ST-Isomap produce identical ar-
rays of shortest cost paths. However, when these arrays differ,
ST-Isomap seems to yield a more visually compelling motion with
fewer jerks than the motion extracted from Isomap’s output. The
reason for this difference can most likely be attributed to ST-Isomap’s
preservation of temporal aspects of the data, which is important for
animation.

Another interesting aspect of our work involves the number of
k-nearest neighbors selected for Isomap and ST-Isomap to achieve
one connected component. This number may reflect the intrinsic
sparseness of the data. For animation, dense data sets would be
helpful in re-sequencing. However, not all data sets exhibit this
characteristic. Perhaps the number of k-nearest neighbors provides
a metric for how well a data set can be re-sequenced.

We cannot make any definitive conclusions about the distance
metric based on this work. For the hip-hop and walk motions,
the L2 distance seems to yield the more visually coherent motion.
However, for the run motion, the Lee distance appears to give a
better motion with greater smoothness. In future work, we plan to
test our methods on more data sets and draw a conclusion about
whether the L2 or Lee distance generally produces more appealing
motions.



We believe that this work has demonstrated the necessity of data
post-processing following nonlinear dimensionality reduction to en-
sure visual coherence for cyclic linear motions. Thus, future in-
vestigation will involve the discovery of such techniques for post-
processing motions. Perhaps dynamically simulating the center of
mass of the data by providing re-calculated global degrees of free-
dom coupled with footskate cleanup mechanisms is required to en-
sure visual appeal [9]. This issue will be our main avenue of future
exploration.
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