
Efficient Generation of Motion Transitions using Spacetime Constraints

Charles Rose
Princeton University

(currently at Microsoft Research)

Brian Guenter
Microsoft Research

Bobby Bodenheimer
Microsoft Research

Michael F. Cohen
Microsoft Research

Abstract

This paper describes the application of space time constraints to cre-
ating transitions between segments of human body motion. The
motion transition generation uses a combination of spacetime con-
straints and inverse kinematic constraints to generate seamless and
dynamically plausible transitions between motion segments. We
use a fast recursive dynamics formulation which makes it possible
to use spacetime constraints on systems with many degrees of free-
dom, such as human figures. The system uses an interpreter of a
motion expression language to allow the user to manipulate motion
data, break it into pieces, and reassemble it into new, more complex,
motions. We have successfully used the system to create basis mo-
tions, cyclic data, and seamless motion transitions on a human body
model with 44 degrees of freedom.

Additional Keywords and Phrases: computer animation, inverse
kinematics, motion capture, motion control, human figure anima-
tion, cyclification.

CR Categories and SubjectDescriptions: I.3.7 [Computer Graph-
ics]: Three Dimensional Graphics and Realism: Animation; I.6.3
[Simulation and Modeling]: Applications; G.1.6 [Constrained Op-
timization]; I.3.5 [Physically-Based Modeling].

1 Introduction

Existing 3D animation tools primarily provide support for creating a
single linear stream of animation where the entire motion is planned
in advance and computed off-line. Interactive 3D character anim-
ation, however, is characterized by a degree of uncertainty that is
not present in animation for film or television. Characters are un-
der the control of the user and must be able to change the way they
move at any time. Crafting animation for an interactive application
presents a new set of problems and requires a different set of spe-
cialized tools.

One solution for these problems is to generate a set of high qual-
ity motions, called basis motions in the remainder of the paper, and
then create transitions between these motions so they can be strung
together into animations of unlimited length and great variety. Basis

Email: ft-chuckr, briangu, bobbyb, mcoheng@microsoft.com

motions are typically short and can be combined into motions rep-
resentative of the type of actions that the body has to perform. For
example, basis motions might be walk cycles, arm waves, karate
kicks, and so forth. Basis motions need not specify all the degrees
of freedom in the body; they can specify just those of one limb or
even a part of a limb. Using motion capture techniques, it is relat-
ively easy to make high quality basis motions, but generating high-
quality transitions among those basis motions is still difficult and
involves significant manual labor. The techniques presented work
well with motion capture data, but would work equally well with
hand-animated basis motions.

We have developed an algorithm for generating these transitions
semi-automatically, greatly reducing the time spent and the number
of parameters an animator must specify. The system provides two
semi-automatic mechanisms for generating motion: motion trans-
ition generation and cyclification. Motion transition generation uses
a combination of spacetime constraints [10] and inverse kinematic
constraints [12] to generate transitions between basis motions. A
fast dynamics formulation makes it practical to use spacetime trans-
ition generation on high degree of freedom systems. With this dy-
namics formulation, the algorithm achieves the lower bound time
complexity for spacetime algorithms that use gradient based optim-
ization techniques.

The motion transitions satisfy both dynamic and kinematic con-
straints. This differs from the work described in [2, 11, 9]. These
papers described various mechanisms, such as dynamic time warp-
ing, Fourier interpolation, and multi-resolution signal processing,
for transforming existing motion data. Transitions between motion
clips were achieved using linear combinations of the two motions
being transitioned. This can result in motion which does not have
realistic dynamic qualities and which may not necessarily satisfy
kinematic or anthropomorphic constraints. The transition mechan-
ism described here generates motion which minimizes the torque re-
quired to transition from one motion to another while maintaining
joint angle constraints. Inverse kinematics are used to ensure that
kinematic constraints are satisfied.

Additionally, we have defined a motion expression language to
allow the user to manipulate motion data, break it into pieces, and
reassemble it into new, more complex motions. We have success-
fully used the system to create basis motions, cyclic data, and mo-
tion transitions on our human body model which has 44 degrees of
freedom.

Section 2 of the paper describes the human body model and how
motion capture data is processed before it gets into the system.
Section 3 describes the semi-automatic spacetime and inverse kin-
ematic transition mechanism. This section also explains the fast
dynamic formulation which allows spacetime constraint optimiza-
tion to run quickly on systems with many degrees of freedom. Sec-
tion 3 also describes our method of motion cyclification. Section 4
explains how body motion is internally represented and describes
the motion expression language. Section 5 presents results of trans-
itions generated with the system. Section 6 concludes the paper.
Appendix A contains an explanation of the notation used in the dy-
namics formulation, the dynamics equations, and their partial deriv-
atives as they are used in the spacetime optimization.

2 Human Body Model

Before motion data can be edited by the system it usually needs to
be preprocessed to remove degrees of freedom which are not actu-
ally present in humans. Most motion capture data, for example, has
three rotational degrees of freedom at each joint. A handful of hu-
man joints actually have three degrees of freedom but most have one
or two. Anatomically extraneous degrees of freedom cause trouble
when generating motion transitions since the synthetic body may
move in ways that are impossible for a real human. We use an optim-
ization procedure [12] which minimizes the angular and positional
deviation between our internal model of a human and the motion
capture data. Limb lengths are automatically extracted from the mo-
tion data and used to scale the internal model appropriately. Our hu-
man body model has 38 joint degrees of freedom and six degrees of
freedom at the root, located between the hips, for positioning and
orienting the entire body. As with most other animation work on
human body models we assume that human joints can be accurately
modeled as revolute joints. While this is not precisely the case, es-
pecially for the knee and the shoulder, for most joints the errors in-
troduced by making this assumption are typically small.

Figure 1: Human body model illustrating degrees of freedom.

3 Semi-Automatic Motion Generation

Two primary semi-automatic motion generation capabilities are
provided. The first is motion transition generation and the second is
motion cyclification. Motion transition generation creates new mo-
tion to span undefined regions between two basis motions. Motion
cyclification transforms a motion which may not be perfectly cyclic
into one which is.

3.1 Function Representation

Representations used in the past for the joint angle function,

q(t) = (q1(t); : : : ; qn(t))

where qi(t) is the angle of joint i at time t, include piecewise con-
stant [10], B-splines [4], and B-spline wavelets [8]. B-spline wave-
lets show good convergence properties for spacetime optimization
when the number of basis functions in a single degree of freedom is
large, e.g., more than 20 or 30. Since the transitions we are generat-
ing are generally short, on the order of 1 second or less, good paths
can be represented with 5 to 10 B-spline coefficients. Our experi-
ence has been that very few iterations are required to achieve con-
vergence with a B-spline basis, so the extra complexity and com-

putation of the B-spline wavelet basis was not justified. For these
reasons we use cubic B-splines as the basis functions for q(t).

3.2 Motion Transitions

Motion transitions are generated using a combination of kinemat-
ics and dynamics. The motion of the root of the body is determined
kinematically while the motion of all the limbs which are not sup-
porting the body is determined using spacetime constraints. Limbs
which support the body during the transition are controlled using
an optimization procedure to solve the inverse kinematics problem
over the entire transition time interval instead of just at one point in
time. A support limb is defined as the kinematic chain from the sup-
port point (e.g., a foot on the floor) back up the kinematic tree to the
root.

3.2.1 Root Motion

The x-z plane is defined to be coincident with the floor with the y
axis pointing upward. The x and z components of the root position
are interpolated based on either the velocities or accelerations avail-
able at the beginning and end of the transition. The y component of
the root translation is linearly interpolated from the end of the first
motion (at time t1) to the beginning of the second motion (at time
t2). The root position in the x-z plane, p(t), during the transition
time is

p(t) = p(t1) +

Z t

t1

n
v1

�
1�

�� t1

t2 � t1

�
+ v2

�� t1

t2 � t1

o
d�

wherev1 andv2 are the vector velocities in the x-z plane of the root
at time t1 and t2. This expression can be easily evaluated analytic-
ally and provides aC1 path for the root. AC2 path is more desirable
and could be achieved by double integration of the accelerations of
the root. However due to limitations in the motion capture process
estimates of the acceleration are poor especially at the beginning and
end of a motion capture data stream.

3.2.2 Inverse Kinematics

Support limbs are controlled kinematically. The system attempts
to locate support points automatically by finding coordinate frames
with motion that remains within a small bounding box over an ex-
tended period of time. The animator has the option of overriding
the system’s guess, manually specifying a joint coordinate frame as
being a support frame. During the transition this coordinate frame
will be held fixed using inverse kinematics constraints. Enforcing
kinematic constraints is done using an extension of the techniques
presented in [12], optimizing for coefficients influencing a range of
time. The inverse kinematics constraint is enforced by minimizing
the deviation

rk(t) = kpk(t)� p̂k(t)k2

of the constrained joint coordinate frame k from its desired position,
where pk is the actual position of the constrained coordinate frame
and p̂k is the desired position. The total error, R, is given by the sum
over all K constrained frames and integrated across the constrained
time interval

R =

Z t2

t1

KX
k=1

rk(t)dt

Since a finite and usually small number of B-spline coefficients are
used to represent the motion curves, minimizing this objective does
not result in rapid oscillations. These can occur when inverse kin-
ematic constraints are maintained independently at each frame time.

R is a function of the joint angles in the body

R = f (q1(t); : : : ; qn(t))

which are themselves functions of the B-spline control points defin-
ing each joint angle function

qi(t) = g(bi;1 ; : : : ; bi;m)

where the bi;j are the control points of the B-spline curve for joint
angle function qi(t). We minimize R using the BFGS optimization
algorithm described in more detail in Section 3.2.3. For the pur-
poses of the present discussion the only relevant part of the BFGS
algorithm is that it requires the gradient of R at each iteration in the
optimization

rR =

�
@R

@bi;1
; � � � ;

@R

@bn;m

�
@R

@bi;j
=

Z
t2

t1

KX
k=1

@rk

@bi;j
dt

@rk

@bi;j
= 2 (pk(t)� p̂k(t)) (ui � dki)

@qi

@bi;j

where ui is the axis of rotation of joint i and dki is the vector from
joint i to the constrainedframe k. Figure 2 shows the effect using the
inverse kinematic constraint to fix the feet of the body on the ground
during a motion transition period. The left leg is constrained to be
on the ground during the entire transition interval while the right leg
is constrained to be on the ground only at the end of the interval. In
the image on the left the inverse kinematic constraints were turned
off; the left leg drifts from its desired position and the right leg fails
to meet its desired position. In the image on the right the inverse
kinematic constraints are satisfied. The left leg remains fixed during
the transition period and the right leg touches down at the end of the
interval.

Figure 2: Effect of inverse kinematics constraint on placement of
feet.

3.2.3 Spacetime Dynamics Formulation

The energy required for a human to move along a path is actually a
complex non-linear function of the body motion since energy can be
stored in muscle and tendon in one part of the motion and released
later on. As shown in [3], joint torques are a reasonable predictor of
metabolic energy, so minimizing torque over time should be a reas-
onable approximation to minimizing metabolic energy. Experience
has shown that motion that minimizes energy looks natural. This
leads to the minimization problem:

minimize e =

Z
t2

t1

X
i

�
2
i (t)dt:

We use the BFGS optimization algorithm [5] to find a minimum
of this integral equation. BFGS belongs to the class of quasi-
Newton algorithms which progress toward a solution by using the
gradient of the objective function

g = re:

The gradient is used to incrementally update a matrix decomposition
of a pseudo-Hessianmatrix,H, and to compute a new step direction

d = �H
�1
g:

The relative amount of computation for each subtask required at
every iteration of the algorithm is common to several quasi-Newton
algorithms: gradient computation, pseudo-Hessian update, and
computation of the step direction.

Since each of the �i is potentially a function of all the qi, _qi, �qi the
gradient requires the evaluation ofO(n2) partial derivatives where
n is the number of degrees of freedom of the body. This is in fact
a lower bound for the asymptotic time complexity of space time al-
gorithms which use gradient-based optimization techniques.

Ifm is the number of B-spline coefficients used to define the time
function of each degree of freedom then the pseudo-Hessian is of
sizenm bynm. The update of the pseudo-Hessianand computation
of the step direction are bothO((nm)2). Form small, less than 20,
andn large, more than 30, the time required to computeg dominates
all other computation thus an efficient formulation for g will pay the
greatest dividends in reducing computation.

Computing g requires finding the joint torques and a variety
of subsidiary quantities, such as angular velocity and acceleration.
This is the inverse dynamics problem which has been extensively
studied in the robotics literature. See [1] for a good overview of
many of these algorithms. Many inverse dynamics formulations
have been proposed in the robotics literature ranging from O(n4)
non-recursive to O(n) recursive algorithms. The inverse dynam-
ics formulation we use is due to Balafoutis [1]. This is an O(n)
recursive formulation which requires 96n� 77 multiplications and
84n�77 additions to solve the inverse dynamicsproblem for a robot
manipulator with n joints. This is faster than the O(n) Lagrangian
recursive formulation developed by Hollerbach [6] and used in [7],
which requires 412n � 277 multiplications and 320n � 201 addi-
tions.

The efficiency of the Balafoutis algorithm derives from the com-
putational efficiency of Cartesian tensors and from the recursive
nature of the computations. These efficiencies carry over to the
computation of the gradient terms.

The Balafoutis algorithm proceeds in two steps. In the first step
velocities, accelerations, net torques, and forces at each joint are
computed starting from the root node and working out to the tips of
all the chains in the tree. In the secondstep the joint torques are com-
puted starting from the tips of the chains back to the root node. See
the appendix for details. These recursive equations can be differen-
tiated directly to compute g or one can use Cartesian tensor identit-
ies to compute the derivatives. Since the differentiation is tedious
and somewhat involved we have included some of the partial deriv-
atives of the recursive equations in the appendix as an aid to those
attempting to reproduce our results.

3.3 Motion Cyclification

If cyclic motions, such as walking and running, come from motion
capture data they will not be precisely cyclic due to measurement
errors and normal human variation in movement. The discontinu-
ities in motion will likely be small enough that the full power of a
spacetime transition will not be necessary in order to splice a motion
back onto itself smoothly. In this case we use a much simpler and
faster algorithm for generating seamless cycles.

The cyclification algorithm proceeds in two steps. First the user
marks the approximate beginning and end of a cycle. We create
two time regions Is and If centered about the markers the user has
chosen. The time regions are set to be one-fifth the length of the time
between markers. The system then finds one time point in each in-
terval that minimizes the difference between position, velocity, and
acceleration of the body:

min
t12Is; t22If

ka� bk2

where a = [q(t1); _q(t1); �q(t1)]
T and b = [q(t2); _q(t2); �q(t2)]

T .
For most motions there will still be a discontinuity at the time

where the motion cycles. We distribute this discontinuity error over
the entire time interval so that the end points of the cycle match ex-
actly by adding a linear offset to the entire time interval. We then
construct aC2 motion curve by fitting a least squares cyclic B-spline
approximation to the modified motion.

Figure 3: Results of cyclification on a walk

4 Motion Representation

To minimize the complexity of working with motions which involve
many degrees of freedom we have developed a flexible functional
expression language, and an interactive interpreter for the language,
for representing and manipulating motions. Using this language it
is a simple matter to interactively type in or procedurally generate
complex composite motions from simpler constituent motions. We
include a small example to demonstrate the simplicity of using the
language.

Motions are represented as a hierarchy of motion expressions.
Motion exressions can be one of three types of objects: intervals;
degrees of freedom (DOF); and motion units (MU). These primit-
ives are described in a pseudo-BNF notation below:

interval ! (f1; : : : ; fn; ts; tf)j �

DOF ! interval jDOF ; intervalj �

MU ! array 1 : : : n [DOF]

An interval is a list of scalar functions of time plus a start time
ts and a stop time tf . A DOF is a list of intervals. A DOF defines
the value over time of one of the angular or translational degrees of
freedom of a body. An MU is an array of DOFs which defines the
value over time of some, but not necessarily all, of the degrees of
freedom of the body.

There are three kinds of operations defined on these primitives:
set operations, function operations, and insert and delete operations.

The set operations are intersection, undefine, and composition,
denoted ^, �, and + respectively. They are defined on intervals as
follows (without loss of generality assume t3 > t1):

I1 = (f1; : : : ; fn; t1; t2)

I2 = (g1; : : : ; gn; t3; t4)

I1 ^ I2 =

(
� t1�t2

(f1 ;:::;fn ;g1 ;:::;gn ;t3;t2) t3<t2;t2<t4

(f1 ;:::;fn ;g1 ;:::;gn ;t3;t4) t3<t2;t4<t2

I1 � I2 =

(
(f1 ;:::;fn ;t1 ;t2)(g1 ;:::;gn ;t1 ;t2) t2�t3

(f1 ;:::;fn ;t1 ;t3)(g1 ;:::;gn ;t2 ;t4) t3<t2;t2<t4

(f1;:::;fn;t1 ;t3)(f1 ;:::;fn ;t4 ;t2) t3<t2;t4<t2

I1 + I2 = I1 � I2; I1 ^ I2

where the comma denotes list concatenation.
The intersection operation takes two intervals as arguments and

returns an interval. The undefine operator takes as arguments two
intervals I1 and I2 and returns a DOF containing two intervals A
and B. A diagrammatic representation of this operation is shown
in Figure 4. The effect of the undefine operator is to undefine any
portions of I1 which overlap with I2.

Figure 4: Interval undefine operation.

The set addition operator takes as arguments two intervals I1 and
I2 and returns a DOF containing two intervals, A and B, if the in-
tersection of I1 and I2 is empty, or three intervals, A, B, and C , if
the intersection of I1 and I2 is not empty. A diagrammatic repres-
entation of this operator is shown in Figure 5.

Figure 5: Interval addition operation.

The effect of this operator is to replace the region of I1 that was
removed by the set undefine operator with a new interval C . Set
operations are useful for finding all the time regions over which two
intervals, DOFs, or MUs are defined or those time regions where
they are multiply defined, i.e., where composed motions conflict.

The function operations perform functional composition on the
elements of an interval: functions and times. For example, one of
the functional operators is a�ne(ts; d; I). This operator scales and
translates the time componentsof an interval, and implicitly the time
value at which the functions in that interval are evaluated. Other
functional operations we have implemented include clip(ts; tf ; I)
which clips out a portion of an interval and translates the beginning
of the clip back to time zero, clip-in-place(ts; tf ; I)which performs
the same operation as clip except that it leaves the clip time un-
changed, and concatenate(I1; I2) which puts the two intervals in
time sequence.

Both the set and function operations can be applied to any inter-
val, DOF, or MU. The operations are pushed down to the level of in-
tervals at which point the primitive interval operations are invoked.
For example if we intersect MU1 and MU2 , first we intersect all the
DOFs of MU1 and MU2 and then we intersect all the intervals in all
the DOFs.

Complex motions can be easily created by functional composi-
tion of simple motions using the set and function operations defined

above. Figure 6 shows an example of a spacetime transition from a
walk arm motion to a wave arm motion and then back to a walk arm
motion. The arm wave MU defines only the DOFs of the arm and
the walk MU defines all the DOFs of the body. First we perform an
affine transformation on the arm wave MU and undefine this from
the walk MU. This will undefine the arm degrees of freedom of the
walk MU during a time that is slightly longer than the arm wave MU.
When we add a time shifted version of the arm wave MU to the res-
ulting MU there will be two undefined regions surrounding it which
the spacetime operator will fill in with spacetime transition motion.
The result will be a smooth transition from a walking arm motion to
an arm wave motion and back to a walking arm motion. This oper-
ation is shown in both a time line view and an operator tree view in
Figure 6. Letting SP denote the spacetime optimization, the algeb-
raic representation of this motion is

SP (a�ne2(wave) + (walk� a�ne1(wave))) :

Function composition viewTime line view

Walk

Wave

aff1

-

aff2

+

Sp

Spacetime
transition
regions

Walk

WalkWalk

Walk

Walk

Walk

Walk

Wave

affine1 (wave)

affine2
(wave)

affine2
(wave)

affine2
(wave)

Figure 6: Spacetime composition of motions.

5 Results

Figure 7: End position of motion 1 and beginning position of motion
2 for a motion transition

We have successfully applied the motion transition algorithm on
many motions. For this example the transition time was set to .6,
and the number of B-spline coefficients to 5. The resulting trans-
ition is shown in Figure 8. Our experience has been that successful
transitions are quite short, usually in the range of .3 to .6 seconds.

Without a biomechanical model to guide a large motion, our min-
imal energy model will often prove insufficient.

The beginning of the transition is colored blue and the end is
colored red with intermediate times a linear blend of the two colors.
This motion is one transition from a longer animation which has 5
transitions between 6 motions.

Figure 8: Multiple time exposure of transition generated from the
motions in Figure 7

Figure 9 shows an example of a motion transition which affects
only the arm degrees of freedom of the motion. This sequenceactu-
ally consists of two space time transitions: one from a walking arm
motion to the salute motion and another back to the walking arm
motion. Each transition motion is .3 seconds long.

Figure 9: Arm walk motion transitioning to salute motion and back
to walk motion. Arm degrees of freedom affected by the transition
are colored green.

Computation times for transitions are strongly dependent on the
number of degrees of freedom involved since the spacetime formu-
lation we use is O(n2) in the number of degrees of freedom. For
the transition of Figure 8 generating the spacetime transition mo-
tion took 72 seconds. This transition involved 44 degrees of free-
dom. For the transition of Figure 9 generating the spacetime trans-
ition took 20 seconds. All timings were performed on a 100 MHz
Pentium processor.

Spacetime transitions are more costly to generate than joint angle
interpolation techniques, but they often produce more realistic mo-
tion. One type of motion that demonstrates this superiority is mo-
tion that has identical joint space beginning and ending conditions
on some of the degrees of freedom of the figure. An example of this
type of motion is shown in Figure 10. This motion begins with the
forearm nearly vertical, held close to the shoulder with zero initial

Figure 10: Joint angle interpolation versus spacetime optimization.

velocity. The motion ends with the forearm held horizontal also with
zero velocity. Because the upper arm and the wrist have identical
joint space starting and ending conditions any simple interpolation
technique, which would include linear interpolation, polynomial in-
terpolation, and most other types of interpolation which simply take
a weighted sum of the two endpoint conditions will yield a motion
such as that shown on the left in Figure 10. This is an unnatural mo-
tion since there is no joint space motion at the shoulder or the wrist.
The spacetime motion, however, has motion at every joint and looks
much more like the kind of motion a person might make.

6 Conclusion

This paper has presented a powerful animation system for manipu-
lating motion data using a motion expression interpreter. Data can
be positioned in space and time, and complete control of the degrees
of freedom in the system allows motions to be spliced and mixed in
arbitrary manners.

The system is capable of generating seamless transitions between
segments of animations using spacetime constraints and inverse kin-
ematics. Using a new, fast, dynamics formulation we can apply
spacetime constraints to systems having a large number of degrees
of freedom and still have reasonable computation time. An addi-
tional capability of the system is the generation of arbitrary length
periodic motions, such as walking, by cyclifying segments of mo-
tion data which are approximately periodic.

The results of using our system to generate animations starting
from a base library of soccer motions are quite good. Cyclification
of a segment of such motions as a walk produces a quite realistic
walk of arbitrary length. The spacetime constraint and inverse kin-
ematic optimization produce transitions between diverse motions
which are seamless and invisible to the viewer. While the optimiza-
tion cannot be done in real time, it is relatively fast, and quite usable
by an animator designing motions.

We plan to extend our motion model to more accurately model
the dynamics of the human body model. The current approximation
used for computing root motion works reasonably well for the class
of transitions we have worked with but is not accurate for free body
motion.

Acknowledgements

The authors thank Jessica Hodgins, College of Computing, Georgia
Institute of Technology, for providing inertia matrices for the human
body model. The Microsoft Consumer Division generously shared
motion capture data with us for use in this project.

A Appendix: Dynamics Details

A.1 List of Symbols

oi origin of the i-th link coordinate frame.

ci center of mass of the i-th link.

!
i
i angular velocity of the i-th link.

zii joint axis of the i-thlink expressed in the i-thcoordinate frame.

sii;j vector from oi to oj expressed in the i-th coordinate frame.

rii;j vector from oi to cj expressed in the i-th coordinate frame.

Ai 3x3 coordinate (or 4x4 homogeneous) transformation relating
the i-th coordinate frame to the (i� 1)-th frame.

Ikci inertia tensor of the i-th link about ci expressed in the k-th co-
ordinate frame.

Jkci Euler’s inertia tensor of the i-th frame about ci expressed in
the k-th coordinate frame.

i
i angular acceleration tensor of the i-th link expressed in the i-th

coordinate frame.

Fi
ci

force vector acting on ci expressed in the i-th coordinate
frame.

Mi
ci

moment vectoraboutci expressed in the i-th coordinate frame.

f ii force vector exerted on link i by link (i� 1).

�ii moment vector exerted on link i by link (i� 1).

�i torque at joint i.

g gravity.

mi mass of the i-th link.

In the above, the subscript indicates the coordinate frame being
represented and superscript the coordinate frame in which it is rep-
resented.

We use + and� on index variables to denote relative placement
in the joint hierarchy. Thus, i� is the predecessor of i which is the
predecessor of i+. For example, in the equation!i+

i+ = AT
i+!

i
i +

zi+i+ _qi+ , the variable !i
i is the angular velocity in the coordinate

frame which precedes the coordinate frame of!i+
i+ . In other words,

coordinate frame i is closer to the root coordinate frame than is
frame i+. Note that there is no guarantee of a uniquely defined suc-
cessor.

g = [0:0;�9:80655; 0:0]T

J
i
ci

=
1

2
trace

�
I
i
ci

�
1� I

i
ci

dual(v) = ~v =

"
0 �v3 v2
v3 0 �v1
�v2 v1 0

#
dual(~v) = v

A.2 Forward Dynamics Equations

Base conditions at the root of the creature:

!
0
0 = z

0
0 _q0

_!
0
0 = z

0
0�q0

�s00;0 = A
T
0 g

Recursive forward dynamics equations:

!
i+
i+ = A

T
i+!

i
i + z

i+
i+ _qi+

_!i+
i+ = A

T
i+ _!i

i + ~!i+
i z

i+
i+ _qi+ + z

i+
i+�qi+

i+
i+ = _~!

i+

i+ + ~!i+
i+ ~!i+

i+

�si+0;i+ = A
T
i+

�
�si0;i +

i
is
i
i;i+

�
�ri+0;i+ =

i+
i+r

i+
i+;i+ +�si+0;i+

F
i+
ci+

= mi+�r
i+
0;i+

~Mi+
ci+

=
�

i+
i+J

i+
ci+

�
�
�

i+
i+J

i+
ci+

�T
A.3 Backward Recursive Equations (Torque Equa-

tions)

At a joint controlling an end-effector:

f
i
i = F

i
ci

�
i
i = ~rii;iF

i
ci
+M

i
ci

�i = �
i
i � z

i
i

At an internal joint:

f
i
i = F

i
ci
+
X
i+

�
Ai+f

i+
i+

�
�
i
i = ~rii;iF

i
ci
+M

i
ci
+
X
i+

�
Ai+�

i+
i+ +~sii;i+f

i
i+

�
�i = �

i
i � z

i
i

A.4 The Energy Function and its Partial

e =

Z
t

X
i

�
2
i dt

@e

@qj
=

@
R t2
t1

P
i
�2i dt

@qj
= 2

Z t2

t1

X
�i
@�i

@qj
dt

A.5 Forward Partials with Initial Conditions

�!i+
i+

�qj

=
i+>j A

T
i+

�!i
i

�qj

�!
i+
i+

�qj

=
i+=j

�AT
j

�qj
!
j�

j�

� _!i+
i+

�qj

=
i+>j A

T
i+

� _!i
i

�qj
+
^�!i+

i

�qj
z
i+
i+ _qi+

� _!i+
i+

�qj

=
i+=j

�AT
j

�qj
_!
j�

j�
+
^

�
�AT

j

�qj
_!
j�

j�

�
z
j

j
_qj

�
i+
i+

�qj
=
^� _!i+

i+

�qj
+
^�!i+

i+

�qj
~!i+
i+ +

^�!i+

i+

�qj
~!i+
i+

!T

��si+0;i+

�qj

=
i+>j A

T
i+

�
��si0;i

�qj
+

�
i
i

�qj
s
i
i;i+

�
��si+0;i+

�qj

=
i+=j

�AT
j

�qj

�
�sj�0;j� +

j�

j�
s
j�

j�;j

�
�Mi+

ci+

�qj
=

�
i+
i+

�qj
J
i+
ci+

�

�
�
i+

i+

�qj
J
i+
ci+

�T

�Fi+
ci+

�qj
= mi+

��ri+0;i+

�qj

A.6 Reverse Partials with Initial Conditions

�f ii
�qj

=
9i+

�Fi
ci

�qj
+
X
i+

�
�Ai+

�qj
f i+i+ +Ai+

�f ii
�qj

�
�f ii

�qj

=
69i+

�Fi
ci

�qj

��ii

�qj

=
9i+
]rii;i+

�Fi
ci

�qj
+
^�Mi

ci

�qj
+
X
i+

�
�Ai+

�qj
�
i+
i++

Ai+

��
i+
i+

�qj
+ gsii;i+ �Ai+

�qj
f
i+
i+ + gsii;i+Ai+

�f i+
i+

�qj

�
��ii

�qj

=
69i+
]rii;i+

�Fi
ci

�qj
+
^�Mi

ci

�qj

��i

�qj
=

��ii

�qj
� z

i
i

References

[1] BALAFOUTIS, C. A., AND PATEL, R. V. Dynamic Analysis of
Robot Manipulators: A Cartesian Tensor Approach. Kluwer
Academic Publishers, 1991.

[2] BRUDERLIN, A., AND WILLIAMS, L. Motion signal pro-
cessing. In Computer Graphics (Aug. 1995), pp. 97–104. Pro-
ceedings of SIGGRAPH 95.

[3] BURDETT, R. G., SKRINAR, G. S., AND SIMON, S. R. Com-
parison of mechanical work and metabolic energy consump-
tion during normal gait. Journal of Orhopaedic Research 1, 1
(1983), 63–72.

[4] COHEN, M. F. Interactive spacetime control for animation. In
Computer Graphics (July 1992), pp. 293–302. Proceedings of
SIGGRAPH 92.

[5] GILL, P. E., MURRAY, W., AND WRIGHT, M. H. Practical
Optimization. Academic Press, 1981.

[6] HOLLERBACH, J. M. A recursive lagrangian formulation of
manipulator dynamics and a comparative study of dynamics
formulation complexity. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10, 11 (Nov. 1980).

[7] LIU, Z., AND COHEN, M. F. An efficient symbolic inter-
face to constraint based animation systems. In Proceedings of
the 5th EuroGraphicsWorkshop on Animation and Simulation
(Sept. 1994).

[8] LIU, Z., GORTLER, S. J., AND COHEN, M. F. Hierarchical
spacetime control. In Computer Graphics (July 1994), pp. 35–
42. Proceedings of SIGGRAPH 94.

[9] UNUMA, M., ANJYO, K., AND TEKEUCHI, R. Fourier prin-
ciples for emotion-based human figure animation. In Com-
puter Graphics (Aug. 1995), pp. 91–96. Proceedings of SIG-
GRAPH 95.

[10] WITKIN, A., AND KASS, M. Spacetime constraints. In Com-
puter Graphics (Aug. 1988), pp. 159–168. Proceedings of
SIGGRAPH 88.

[11] WITKIN, A., AND POPOVÍC, Z. Motion warping. In Com-
puter Graphics (Aug. 1995), pp. 105–108. Proceedings of
SIGGRAPH 95.

[12] ZHAO, J., AND BADLER, N. I. Inverse kinematics position-
ing using non-linear programming for highly articulated fig-
ures. ACM Transactions on Graphics 13, 4 (Oct. 1994), 313–
336.

