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Abstract

Designinga rich repertoire of behaviors for virtual humansis an importantproblemfor virtual environmentsand
computergames.Oneapproach to designingsuch a repertoire is to collectmotioncapture dataandpre-processit
to forma structure thatcanbewalkedin variousorders to re-sequencethedatain new ways.In such anapproach
identifyingthe location of goodtransitionpoints in the motionstreamis critical. In this paper, we evaluatethe
costfunctiondescribedby Leeet al.15 for determiningsuch transitionpoints.Leeet al. proposedan original set
of weightsfor their metric.We computea setof optimalweightsfor thecostfunctionusinga constrainedleast-
squarestechnique. Theweightsare thenevaluatedin twoways:first, througha cross-validationstudyandsecond,
througha medium-scaleuserstudy. Thecross-validationshowsthat the optimizedweightsare robust andwork
for a wide variety of behaviors. Theuserstudydemonstratesthat the optimizedweightsselectmore appealing
transitionpointsthantheoriginal weights.

CategoriesandSubjectDescriptors(accordingto ACM CCS): I.3.7 [ComputerGraphics]:Animation

1. Introduction

Designinga rich repertoireof behaviors for virtual humans
isachallengingtaskthathasseenmuchwork in recentyears.
Motion captureallowsoneto constructa largelibrary of raw
motion, but processingthat motion into a finishedproduct
suchasa videogamecharacteris still a labor intensive pro-
cess.Minimizing theamountof manualinterventionin pro-
cessingmotioncapturedatahasbeenthe focusof muchre-
centresearch.

This researchtypically falls into two areasof effort.
One area createsmotion from an underlying probabilis-
tic model.17� 3� 19� 5 In this approachmotioncaptureprovides
training datafor the model.The secondapproachis moti-
vatedby thework of Schödlet al.22 andcreatesnew motion
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by re-orderingtheoriginalmotion.15� 10� 1 In thisapproachthe
qualitiesof theoriginaldataareemphasized.

The key to this secondapproachis the properselection
of transitionpoints,pointsat which themotionwill change
from onesegmentof capturedmotion to anothersegment,
eitherwithin the samemotion or anothermotion. Because
thesetransitionpoints representdiscontinuitiesin the mo-
tion stream,selectionof goodtransitionpointscanbe cru-
cial to thequalityof theresultingmotion.Eachof theworks
citedaboveusesadifferentdistancefunctionto calculatethe
costof transitioningfrom oneframeto another. Thesedis-
tancefunctionsareall parameterizedthroughuser-selected
weights.

Thecurrentpaperevaluatesthecostfunctionproposedby
Lee et al.15 for determiningthe transitioncost.Studiesof
suchcostfunctionshave not beenconducted,althoughtheir
importanceis readilyacknowledged,e.g.,seeLamouretand
van de Panne.13 This paperthus presentsthe first empiri-
cal evaluationof one componentof a completeanimation
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system.The contribution of the paperlies in producinga
setof optimizedweightsthatselectgoodtransitions.These
weightswereevaluatedfirst throughacross-validationstudy
thatshows theoptimizationis robust,andsecondthrougha
userstudythatconfirmsthattheweightselectionis superior.

The paperis organizedasfollows. In Section2 we pro-
vide backgroundinformationon this areaof animationand
thecostfunction.In Section3 wedescribetheprocessof op-
timizing weightsfor thecostfunctions.In Section4 we de-
scribeboththeprocessof cross-validationfor theoptimized
weightsand the userstudy that wasconducted,andreport
their results.Finally, in Section5 we discusstheseresults
andprovidedirectionsfor futurework.

2. Background

Motion captureresearchhasconcentratedon studyingways
of editing and modifying existing motions.SeeGleicher7

for a survey of work in this area.As mentionedpreviously,
work in minimizingtheamountof manualeditingneededfor
usingmotion capturehasbeenapproachedin two primary
ways:throughtheuseof probabilisticmethodsthatsynthe-
sizenew motionandthroughmethodsthatre-usetheoriginal
datafor synthesis.

Probabilisticmethodsfor motionsynthesisbuild a model
basedon aggregateor statisticalqualitiesof a setof training
examples.3 � 2� 5� 19� 17 Thesetechniquesarevery powerful, but
mayeliminatesubtletiesof themotionduringsynthesisthat
give themotiona senseof richness.

In contrast,otherresearchershavedrawn inspirationfrom
the work of Schödl et al.22 on video textures to retain
the original motion sequencesbut play them back in non-
repetitivestreams.Sidenbladhetal.23 employ aprobabilistic
searchmethodto find thenext posein a motionstreamand
obtainit from a motiondatabase.Arikan andForsyth1 con-
struct a hierarchyof graphsconnectinga motion database
anduserandomizedsearchto extractmotionsatisfyingspec-
ified constraints.Kovaretal.10 useasimilar ideato construct
a directedgraphof motion that can be traversedto gener-
atedifferentstylesof motion.Leeetal.15 modelmotionasa
first-orderMarkov processandalsoconstructagraphof mo-
tion. They demonstratethreeinterfacesfor controlling the
traversalof their graph.

Oneof thedistinguishingfeaturesamongthesepapersis
that they employ differentunderlyingcostmetricsfor eval-
uating transitionpoints in the graph.Lee et al. usea cost
functionbasedon joint orientationsandvelocities.Kovar et
al. usea costfunctionbasedon the distancebetweenpoint
samplesof themeshrepresentationof thecharacter. Arikan
andForsythusea hybrid methodsimilar to that of Leebut
involving joint accelerationsaswell. Sidenbladhet al. usea
probabilisticsearchmethod.A principledunderstandingof
thebestcostfunctionis not known.

In this paperwe evaluatethe costmetric basedon joint

orientationsbecauseof the fact that motion capturedatais
typically representedby joint orientationsof the skeleton.
Therefore,we chosethecostmetricdescribedby Leeet al.
Comparedto othercostmetrics,thecostmetricusedby Lee
etal. canbecomputeddirectlyandquickly.

Our evaluation consists,in part, of a user study. Such
studieshaveatraditionin thepsychologicalliteraturedating
from theoriginal light point studiesof Johansson.9 In these
studies,participantscanidentify suchthingsasthegender12

and emotionalstateof the actor.24 However, thesestudies
areafter a muchcoarserevaluationof motion thanwe are
interestedin, typically evaluatingwhetherthemotion is bi-
ologically producedor not. Oesker et al.18 performa study
methodologicallysimilar to our own but trying to assessthe
effects of level of detail in animation.Their experimental
designdiffers from ours in that it is within-subjectsasop-
posedto between-subjects.They conclude,in part,thatvari-
ationsin animationstyle influenceobserver’s evaluationof
animatedcharacter“skill.” ReitsmaandPollard20 conducted
userstudieson perceptionof errorsin ballistic motion and
proposedanempiricalmetricbasedon their findings.

2.1. The Cost Function

In this section, the specificsof the cost function are re-
viewed.For furtherdetails,thereaderis referredto theorig-
inal paperdescribingthefunction.15

Leeetal.constructamatrixof probabilitiesfor transition-
ing from one frame to another. The probabilitiesare con-
structedfrom a measureof similarity betweenthe frames.
Wewill studythecostin thepaper, thatis, wearenotstudy-
ing theprobabilityof thetransitions.Thecostfor transition-
ing from framei to frame j is givenby

Di j � d � pi � p j ��� νd � vi � v j � (1)

whered � vi � v j � is the weighteddistanceof joint velocities,
ν weightsthe velocity differencewith respectto d � pi � p j � ,
andd � pi � p j � is theweighteddifferenceof joint orientations.
This termis givenby

d � pi � p j �	� 


 pi � 0 � p j � 0 


 2 � m

∑
k 
 1

wk




 log � q� 1
j � kqi � k � 


 2 � (2)

In Equation2, pi � 0 � p j � 0 � R3 aretheglobaltranslationalpo-
sitionsof thefigureat framesi and j , respectively; m is the
numberof joints in thefigure;andqi � k � q j � k aretheorienta-
tions of joint k andframesi and j , respectively, expressed
asquaternions.The log-normterm representsthe geodesic
normin quaternionspace,andeachtermis weightedby wk.

For this work, our skeletonconsistedof 16 joints andthe
completefigurehad54 degreesof freedom.Eachjoint was
a threedegreeof freedomjoint, and thereweredegreesof
freedomfor globalpositionandorientation.All motioncap-
turedatawassampledat 30 framespersecond.
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Figure 1: Thecostmatrix for twoclipsof dancemotionwith
original weights.Each motion is 10 secondslong. Darker
valuescorrespondto lower costsfor transition.

3. Optimizing the Weights

Thecostfunctioncontainsparametersto modify the transi-
tion cost.Theparameterstake theform of weights.Thecost
functionweightsboth thegeodesicnormbetweenjoint ori-
entationsandthe joint velocities,andcontainsanotherpa-
rameter, ν, trading off the velocity and position distances.
Leeetal. reportsettingtheweightsto onefor theshoulders,
elbows,hips,knees,pelvis,andspine;othersaresetto zero.
No valuefor ν is given.

Wewouldlike to usemotioncaptureto determineoptimal
valuesfor theweights.We will contrastmotionsusingopti-
mizedweightsversustheweightsLeeet al. report.We will
refer to the setsof weightsusedby Lee et al. asthe origi-
nal weights.An exampleof thecostfunctionfor transitions
from onemotionto anotherfor theoriginalweightsis shown
in Figure1 with ν � 1. Thefigure is normalizedso thatan
intensityof zerocorrespondsto theminimalvalueof thecost
functionfor thatmotionandanintensityof 255corresponds
to the maximumcost.The minimum andmaximumbefore
normalizationare0.0993and20.0677.Thecostfunction is
reasonablyuniformly distributedover its ranges,so the lin-
earnormalizationgivesanaccuratepictureof thefunction’s
variation.

To optimizetheweights,wetookasetof 16differentseg-
mentsof capturedmotion,eachseveralsecondslong.These
segmentsconsistedof a varietyof motionsincludingwalk-
ing in differentstyles,running in differentstyles,jogging,
dancing,andgesturing.For thesesegmentswe manuallyse-
lected16 good transitionsand 26 bad transitions.A good
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Figure 2: Thecostmatrix for two clips of dancingmotion
usingtheoriginal weights.In (a) ν � 0

�
1 andin (b) ν � 10.

transitionwasone in which the visual discontinuityof the
transitionwasminimal;abadtransitionwasonein whichthe
visualdiscontinuitywasdisconcerting.Thetransitionswere
selectedby a singlepersonwith animationexperienceand
critically examinedby two otherexperiencedviewersfor ap-
proval.Ouroptimizationwill dependonhow well thesetran-
sitionswereselected,but in our experienceit is not difficult
to manuallyselectgoodandbadtransitions.

Wethensolvedfor theoptimalvaluesof theweightsusing
aconstrainedleast-squaresminimization,thatis,

min
w � Aw � b � 22 (3)

wherew is a vectorof weights,A is a matrix of theposition
andvelocity distancesof Equation1; b is a vectorof ones
andzeros—anentry is oneif it correspondsto a badtransi-
tion, andzeroif it correspondsto a goodtransition.Theop-
timizationwasconstrainedsuchthat theweightswerenon-
negativeandsymmetric,i.e., theweightfor theleft shoulder
mustbe identicalto the right shoulder. The symmetrycon-
straint makes intuitive sensebut will generallynot be the
result of the optimizationwithout this constraint.The op-
timization problemwassolved usingan active setmethod
similar to thatdescribedin Gill et al.6

The weight ν entersthe terms in the A matrix above
non-linearly, thusrequiringamorecomplicatedoptimization
method.However, for motionsin our database,our experi-
enceis thatthevelocitytermmakeslittle effectivedifference
in the cost.Figure2 shows this insensitivity to ν for tran-
sitioning from onedancemotion to anotherdancemotion,
with ν � 0

�
1 andν � 10. In fact, the global minimum for

this motion wasunchangedasν wasvariedfrom 0 to 100.
Thus,ν remainedonein theoptimizationprocess.

The normalizedweights(largestscaledto one)from the
optimizationprocessareshown in Table1. Thecostmatrix
for themotionsusingtheoptimalweightsareshown in Fig-
ure3. This figure is for thesamemotionsthathave thecost
matrixshown in Figure1. Thereis substantialdifferencebe-
tweentheoriginal weightsandthenew weights.In general,
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Right andLeft Hip 1.0000

Right andLeft Knee 0.0901

Right andLeft Shoulder 0.7884

Right andLeft Elbow 0.0247

Table 1: Joints with non-zero weightsand their associated
weightswhensolvedasdescribedin the text. Theoptimiza-
tion zeroedtheweightsfor theremainingjoints.

Figure 3: Thecostmatrix for twoclipsof dancemotionwith
optimizedweights.Each motionis 10 secondslong. Darker
valuescorrespondto lower costsfor transition.

thecostwith new weightshasbecomemorerestrictive.Nu-
merically, the optimizationzeroedweightsassociatedwith
joints found to be unimportant.Most of the weightswere
foundto beunimportant:only thehips,knees,shouldersand
elbows wereimportant.Theresultis consistentwith our ex-
pectationthat thosejoints arethe mostimportantones,but
surprisingnonethelesssincethey imply therestareunimpor-
tantin selectinga reasonabletransition.

4. Evaluation

4.1. Cross-Validation

To estimatethegeneralizationrateof theoptimizedweights,
weemployeda full leave-one-outcross-validationstudy.4 In
this technique,the weightsare optimizedwith one set of
trainingdatadeleted,andtheresultingweightsarethenused
to computetheoptimal valueof a transitionfor thedeleted
dataset.Recall that our training set containeda rich vari-

Figure 4: Theanimatedcharacterusedin theuserstudy.

ety of motions.Theresultsof this studywerequiteencour-
aging.Theaveragedeviation betweenthe full optimization
andthatof theleave-one-outoptimizationwaslessthanone
framein theanimationsequences.Themediandeviationwas
zero frames.Additionally, we performeda similar test by
againdeletingonesetof trainingdata,re-computingtheop-
timal weights,andthencomputingtheoptimaltransitionfor
a completelydifferentmotionthantheweightsweretrained
on, a dancingmotion from a different performercontain-
ing differentdynamics.For this study, theresultingweights
computedthesameoptimaltransitionin 41 of 42 cases.For
thecasewheretheoptimaltransitionwasnotcomputediden-
tically to theothercases,it wasoneframedifferent.Based
on theseempiricalapproaches,we believe that the optimal
weightswecomputedarebothrobustandgeneralizeto pick
reasonabletransitionsfor a wide variety of motions.How-
ever, whethertheoptimalweightsarenecessarilybetterthan
theoriginalweightscannotbeverifiedby this technique.In-
stead,we mustconducta userstudyto determinetheresult.

4.2. User Study

A userstudywas conductedto evaluatethe weightingde-
terminedby the optimization.A motion capturesequence
of dancingwas createdby a performerdifferent from the
oneusedto capturethe motionsusedin Section3 for op-
timizing the weights.This practicewasemployed to elim-
inatethe possibility of any performer-dependenteffectson
theweighting.A frameof ananimatedsequenceusedin the
studyis shown in Figure4.

Theparticipantgroupconsistedof 26 adultswith normal
color vision who hadno prior experienceworking with ani-
mationoutsideof computergamesandthelike.Participants
in the studyweretold they would beviewing ananimation
of motion sequencesand shown an exampleanimationof
a walking sequenceusingthe modelthat would be usedin
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theexperiment.They werethentold themotionsthey would
be viewing would have a discontinuityin the motion, and
shown an example of an egregious discontinuity. Partici-
pantsweretold they would beasked to ratehow noticeable
andnaturalthe discontinuitieswere,both individually and
in comparisonto anothermotion. Participantswereshown
two motions.Eachmotionwasa six-secondclip; thetransi-
tion from the first motion sequenceto the secondoccurred
at t � 3s in the clip. The motionsconsistedof the globally
optimum Lee cost transitionwith the weightsusedin Lee
at al.15, andtheglobally optimumLeecosttransitionusing
weightsdeterminedin Section3. Thesetwo motionswere
different,i.e., thelowestcosttransitionoccurredat different
pointsin themotionfor eachcostfunction.In particular, for
thedancingmotionusedin theuserstudy, theoptimal tran-
sition for theoriginal costoccurredfrom frame91 to frame
281,whereastheoptimalcosttransitionoccurredfrom frame
232to frame280.

The setsof motionsparticipantswereasked to compare
weretheoriginal costversustheoptimalcost.To besteval-
uatethe transition,no interpolationor smoothingbetween
the sequenceswas done.Sincea completeanimationsys-
tem,suchasthatpresentin a videogame,will employ some
sortof motiontransitionmechanism,thisdecisionmayseem
odd.However, we believe thatthis decisionis necessaryfor
thefollowing reasons.Employing amotiontransitionmech-
anism involves making many engineeringdecisionsabout
how the motionsare to be blended.For example,the time
over which the transitionwill occurmustbe specified.The
methodof blendingmustbedetermined,e.g.,linearinterpo-
lation, ease-inease-out,or employing a very sophisticated
mechanismsuchasin Roseet al.21 Additionally, somesort
of inversekinematicsroutine is usually required,because
blendingintroducesthe problemof foot-skateor foot-slide
(see,for example,Kovar et al.11). Therearea numberof in-
versekinematicsroutinesavailable,16� 11� 21 andeachof them
alsomakesengineeringdecisionsthat affect the quality of
theresultingmotion.

Additionally, blendingworks two ways.It canmaskthe
selectionof a bad transition(for example,it cansmootha
discontinuity),or it canmake a badtransitionextremelyob-
vious (for example,if the transitioncausesonepart of the
body to intersectwith another).Which effect predominates
dependson the quality of the transitionselected.Our work
tries to evaluatethe quality of transitionsin the absenceof
theotherconfoundingfactorssuchasthedecisionsmadein
creatingsmoothtransitions.Oncewe have empirically es-
tablishedthat a metric producesreasonableor goodtransi-
tions,thenwe canbegin to evaluatetheengineeringfactors
associatedwith producingvisually compellingandoptimal
transitions.We note,however, for eachtransitiontheglobal
positionandorientationof thecharacterwasmatchedat the
pointof transition.

Wecontrolledfor ordereffectsin thepresentationby ran-

Comparison Mean Std.Dev.

OptimizedWeightvs.OriginalWeight

LooksBetter? 2.73 1.00

More Natural? 2.69 0.84

Table 2: Summaryof resultsfor direct comparisonsof op-
timizedversusoriginal functions.Preferenceswere ratedon
a scaleof zero to four where zero correspondedto looking
much worse (or very unnatural) and four correspondedto
lookingmuch better(or verynatural). For example, partic-
ipantswere asked if they thoughtthat theoptimizedmotion
“lookedbetter” thantheoriginal motion.

domlydividing theparticipantsinto two equal-sizedgroups.
The first group was presentedthe original and optimized
weightedmotion sequencesfirst, the secondwaspresented
the optimally weightedmotion sequencesfirst. After view-
ing eachsequence,participantscompleteda post-sequence
questionnaireconsistingof six questionsasking them to
compareandrate their impressionsof the motionsusinga
five-point Likert scale.Likert scaleresponsesrather than
forced choiceresponseswere chosento exploit the statis-
tical power the former offers in distinguishingsubtledif-
ferences.Userswereaskedwhich sequenceseemedto have
betterquality, wasmorenatural,andcomparethesequences
basedon thenoticeabilityof thetransitions.Whereapplica-
ble, the resultsof the userstudywereanalyzedusingtwo-
way between-subjectsanalysesof variance(ANOVAs). The
ANOVAs were2 � 2 with the independentvariablesbeing
cost function and presentationorder. Resultswere consid-
eredsignificantif p � 0

�
05.

In general,participantsconsideredtheoptimallyweighted
betterandmorenaturalthantheoriginalweighted.Thesere-
sults are summarizedin Table 2. To supporttheseresults,
participantsalso found that the optimal transition for the
weightedcostto besignificantlymorerealisticthantheorig-
inal cost(F � 6

�
39,MS � 6

�
94, p � 0

�
01).No significantin-

teractioneffectswerepresentin theorderingof themotions
for any of thecomparisons.

5. Discussion

Thispaperproducedweightsfor thecostfunctiondescribed
by Leeet al. thatled to thedeterminationof superiortransi-
tions.We cross-validatedtheweightsto assessthegeneral-
izeability androbustnessof theoptimizationprocedure.We
comparedthe optimizedweightswith the original weights
by running a userstudy. The userstudy showed that opti-
mizedweightsproduceperceptuallybettertransitionpoints.

However, there are several limitations and possible
sourcesof biasin our results.Whenoptimizingtheweights,
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our motion data did not contain highly dynamic motions
suchas would be typical from a gymnasticfloor exercise
or othersources.The weightsmay not be a goodpredictor
of goodtransitionsfor suchmotions.It wasalsolimited to
16 different sequencesof motion for the optimization.We
would like to repeatour experimentsusinga larger library
with moredynamicmotion. Renderingstyle canaffect the
quality of theperceivedmotionasshown by Hodginset al.8

Our weightoptimizationusedonly oneperformer, although
our motionsweretestedin thecross-validationandtheuser
studyon motiongeneratedby a differentperformer. Finally,
our motiondatadid not containa largerepertoireof “back-
ward” motions,which may have resultedin the position-
velocity weight ν having marginal impactfor the Leecost.
Ourdatasuggestthatthevelocitycomponentof theLeecost
is not significantfor a wide variety of motions.Removing
theselimitationsor betterunderstandingtheirnecessityis an
on-goingproject.

We are interestedin examining other cost metrics.10� 1
Thesecostmetricsarebasedondifferentfeaturesof motions
and how they are represented.We want to evaluatewhich
costmetriccouldpick thebesttransitionpoint setsfor mo-
tion capturereusing.

Weplanto investigatetheeffectof blendingonthesetran-
sitionsaswell. As notedearlier, blendingsmoothssomeof
the discontinuitiesin the motion. At least for linear inter-
polation,however, noticeabledifferencesarestill apparent.
Therearethreemethodsof smoothingthetransitionsthatwe
would liketo understandbetterfrom aperceptualviewpoint:
linearinterpolation(possiblywith ease-inease-out),filtered
smoothingusingthemachinerydevelopedin LeeandShin,14

anddynamicgenerationof transitionsasdonein Roseetal.21

Theuseof atransitionmechanismin conjunctionwith acost
metricmayhave someeffect on theweights,andwe would
like to determinewhatthateffect is, if it exists.

Additional topics for further researchinclude extending
theparametersof theuserstudyto betterassesshow people
perceive the transitionsandwhat characteristicsareimpor-
tantto themin determiningthequalityof themotions.Most
participantsin the study reportedthat the transitionbreak
wasnoticeable.Assessinghow aninterpolationschemeim-
pactstheperceptionof thetransitionis likely to beadifficult
task,but couldyield importantinsightsinto thecharacteris-
ticsof visually compellingmotion.

The increasingrichnessof humancharactersin three-
dimensionalcomputergamesshouldmaketransitionsin mo-
tion dataanincreasinglyimportantproblem.Webelieve that
theseresultsgive significant guidanceto thoseconcerned
with creatingvirtual humanswith a rich repertoireof be-
haviors, andmayhelp in there-useof largemotioncapture
data-sets.
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