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Abstract

Designinga rich repertoie of behavios for virtual humansgs animportantproblemfor virtual ernvironmentsand
computergamesOneappoad to designingsud a repertoie is to collectmotioncaptule dataand pre-processt
to forma structue that canbewalkedin variousorders to re-sequencthedatain new ways.In suc anapproach
identifyingthe location of goodtransitionpointsin the motionstreamis critical. In this paper we evaluatethe
costfunctiondescribedby Leeet al.15 for determiningsud transitionpoints.Leeet al. proposedan original set
of weightsfor their metric. We computea setof optimal weightsfor the costfunctionusinga constained least-
squaestednique Theweightsare thenevaluatedin two ways:first, througha cross-validatiorstudyandsecond,
througha medium-scalaiser study The cross-validationshowsthat the optimizedweightsare robust and work
for a wide variety of behavios. The user studydemonstatesthat the optimizedweightsselectmore appealing
transitionpointsthanthe original weights.
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1. Introduction by re-orderingheoriginalmotions 101 |n thisapproachhe

- . . . ) qualitiesof the original dataareemphasized.
Designingarich repertoireof behaiors for virtual humans

isachallengingaskthathasseermuchworkin recentyears.
Motion captureallows oneto constructlargelibrary of raw
motion, but processinghat motion into a finished product
suchasavideogamecharacteis still alaborintensie pro-
cessMinimizing the amountof manualinterventionin pro-
cessingmotion capturedatahasbeenthe focusof muchre-
centresearch.

This researchtypically falls into two areasof effort.
One area createsmotion from an underlying probabilis-
tic modell7.3.195 |n this approachmotion captureprovides
training datafor the model. The secondapproachis moti-
vatedby thework of Schédletal.22 andcreatesnev motion
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The key to this secondapproachis the properselection
of transitionpoints,pointsat which the motionwill change
from one segmentof capturedmotion to anothersegment,
eitherwithin the samemotion or anothermotion. Because
thesetransition points representdiscontinuitiesin the mo-
tion stream,selectionof goodtransitionpoints canbe cru-
cial to thequality of theresultingmotion.Eachof theworks
citedabove usesadifferentdistancdunctionto calculatehe
costof transitioningfrom one frameto another Thesedis-
tancefunctionsareall parameterizedhroughuserselected
weights.

Thecurrentpaperevaluateghe costfunction proposedy
Lee et al .15 for determiningthe transition cost. Studiesof
suchcostfunctionshave not beenconductedalthoughtheir
importances readilyacknavledged,e.g.,seeLamouretand
van de Pannel3 This paperthus presentshe first empiri-
cal evaluationof one componentof a completeanimation



WangandBodenheimef CostMetric Evaluation

system.The contrikution of the paperlies in producinga
setof optimizedweightsthat selectgoodtransitions.These
weightswereevaluatedirst througha cross-alidationstudy
thatshaws the optimizationis robust, andsecondhrougha
userstudythatconfirmsthattheweightselectionis superior

The paperis organizedasfollows. In Section2 we pro-
vide backgroundnformationon this areaof animationand
thecostfunction.In Section3 we describeheprocesof op-
timizing weightsfor the costfunctions.In Section4 we de-
scribeboththe procesof cross-alidationfor the optimized
weightsandthe userstudy that was conductedandreport
their results.Finally, in Section5 we discusstheseresults
andprovide directionsfor futurework.

2. Background

Motion captureresearcthasconcentrate@n studyingways
of editing and modifying existing motions. See Gleicher

for asuney of work in this area.As mentionedpreviously,

work in minimizingtheamountof manualkeditingneededor

using motion capturehasbeenapproachedn two primary
ways:throughthe useof probabilisticmethodsthat synthe-
sizenew motionandthroughmethodghatre-usetheoriginal
datafor synthesis.

Probabilisticmethodsfor motion synthesisuild a model
basedn aggregateor statisticalqualitiesof a setof training
examples? 25,1917 Thesetechniquesrevery powerful, but
may eliminatesubtletiesof the motionduring synthesighat
give themotiona senseof richness.

In contrastptherresearcherbave dravn inspirationfrom
the work of Schddl et al22 on video textures to retain
the original motion sequenceséut play thembackin non-
repetitve streamsSidenbladtetal 23 employ a probabilistic
searchmethodto find the next posein a motion streamand
obtainit from a motion databaseArikan and ForsytH con-
structa hierarchyof graphsconnectinga motion database
anduserandomizedearctto extractmotionsatisfyingspec-
ified constraintsKovar etal.10 useasimilarideato construct
a directedgraphof motion that can be traversedto gener
atedifferentstylesof motion.Leeetal !> modelmotionasa
first-orderMarkov processandalsoconstruct graphof mo-
tion. They demonstratahreeinterfacesfor controlling the
traversalof their graph.

Oneof thedistinguishingfeaturesamongthesepaperss
thatthey emplg differentunderlyingcostmetricsfor eval-
uating transitionpointsin the graph.Lee et al. usea cost
functionbasedon joint orientationsandvelocities.Kovar et
al. usea costfunction basedon the distancebetweenpoint
samplef the meshrepresentationf the characterArikan
and Forsythusea hybrid methodsimilar to that of Lee but
involving joint accelerationaswell. Sidenbladtet al. usea
probabilisticsearchmethod.A principled understandingf
thebestcostfunctionis notknown.

In this paperwe evaluatethe costmetric basedon joint

orientationsbecausef the factthat motion capturedatais
typically representedy joint orientationsof the skeleton.
Therefore we chosethe costmetric describedby Lee et al.
Comparedo othercostmetrics,the costmetricusedby Lee
etal. canbecomputedirectly andquickly.

Our evaluation consists,in part, of a userstudy Such
studieshave atraditionin the psychologicaliteraturedating
from the original light point studiesof Johanssof.In these
studies participantscanidentify suchthingsasthe gendet?
and emotionalstateof the actor24 However, thesestudies
are after a much coarserevaluationof motion thanwe are
interestedn, typically evaluatingwhetherthe motionis bi-
ologically producedor not. Oesler et al.18 performa study
methodologicallysimilar to our own but trying to assesshe
effects of level of detail in animation.Their experimental
designdiffers from oursin thatit is within-subjectsas op-
posedo between-subject§hey concludejn part,thatvari-
ationsin animationstyle influenceobserer’s evaluationof
animatedcharactefskill.” ReitsmaandPollard2® conducted
userstudieson perceptionof errorsin ballistic motion and
proposedinempiricalmetricbasedntheir findings.

2.1. TheCost Function

In this section,the specificsof the cost function are re-
viewed. For furtherdetails,thereadeiis referredto the orig-
inal paperdescribingthefunction1s

Leeetal. constructamatrix of probabilitiesfor transition-
ing from one frameto another The probabilitiesare con-
structedfrom a measureof similarity betweenthe frames.
Wewill studythecostin thepaperthatis, we arenot study-
ing the probability of thetransitions The costfor transition-
ing from framei to framej is givenby

Dij:d(piapj)+Vd(vl’VJ) (1)

whered(v;,v;) is the weighteddistanceof joint velocities,
v weightsthe velocity differencewith respectto d(p;, p]-),
andd(p;, pj) is theweighteddifferenceof joint orientations.
Thistermis givenby
2 m 2
o559 = o vl + 3w loa(0,) - @
=1

In Equation2, p, oPjo€ R3 aretheglobaltranslationapo-
sitionsof theflgure atframesi and j, respectiely; mis the
numberof joints in thefigure; andqI K9k arethe orienta-
tions of joint k andframesi and j, respectvely, expressed

asquaternionsThe log-normterm representshe geodesic
normin quaterniorspaceandeachtermis weightedoy w,.

For this work, our skeletonconsistedf 16 joints andthe
completefigure had 54 degreesof freedom.Eachjoint was
a threedagreeof freedomjoint, andtherewere degreesof
freedomfor globalpositionandorientation All motioncap-
turedatawassamplecht 30 framespersecond.
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From Motion

To Motion

Figure 1. Thecostmatrixfor two clips of dancemotionwith
original weights.Each motionis 10 seconddong. Darker
valuescorrespondo lower costsfor transition.

3. Optimizing the Weights

The costfunction containsparameterso modify the transi-
tion cost. The parametergsake theform of weights.The cost
function weightsboth the geodesimorm betweenjoint ori-
entationsandthe joint velocities,and containsanotherpa-
rameter v, trading off the velocity and position distances.
Leeetal. reportsettingthe weightsto onefor the shoulders,
elbaws, hips, knees pelvis,andspine;othersaresetto zero.
No valuefor v is given.

Wewouldlik e to usemotioncaptureto determineoptimal
valuesfor theweights.We will contrastmotionsusingopti-
mizedweightsversusthe weightsLee et al. report. We will
refer to the setsof weightsusedby Lee et al. asthe origi-
nal weights.An exampleof the costfunctionfor transitions
from onemotionto anotheifor theoriginal weightsis shavn
in Figure 1 with v = 1. Thefigureis normalizedso thatan
intensityof zerocorrespondso theminimalvalueof thecost
functionfor thatmotionandanintensityof 255 corresponds
to the maximumcost. The minimum and maximumbefore
normalizationare0.0993and 20.0677.The costfunctionis
reasonablyniformly distributedover its rangessothelin-
earnormalizationgivesanaccurateictureof thefunction’s
variation.

To optimizetheweights wetook a setof 16 differentsey-
mentsof capturednotion, eachseveralsecond$ong. These
segmentsconsistedf a variety of motionsincluding walk-
ing in differentstyles,runningin different styles,jogging,
dancing,andgesturing For thesesggmentswe manuallyse-
lected 16 good transitionsand 26 bad transitions.A good
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Figure 2: The costmatrix for two clips of dancingmotion
usingtheoriginal weightsIn (a) v=0.1 andin (b) v = 10.

transitionwasonein which the visual discontinuity of the
transitionwasminimal; abadtransitionwasonein whichthe
visualdiscontinuitywasdisconcertingThetransitionswere
selectedby a single personwith animationexperienceand
critically examinedby two otherexperiencediiewersfor ap-
proval. Ouroptimizationwill depencbnhow well theseran-
sitionswereselectedbut in our experiencet is notdifficult
to manuallyselectgoodandbadtransitions.

Wethensolvedfor theoptimalvaluesof theweightsusing
aconstrainedeast-squaresiinimization,thatis,

: 2
min||Aw - bj 3 3

wherew is a vectorof weights,A is a matrix of the position
andvelocity distancef Equationl; b is a vectorof ones
andzeros—arentryis oneif it correspondso a badtransi-
tion, andzeroif it corresponds$o a goodtransition.The op-
timization wasconstrainedgsuchthat the weightswerenon-
negative andsymmetric,i.e., theweightfor theleft shoulder
mustbe identicalto the right shoulder The symmetrycon-
straint malkes intuitive sensebut will generallynot be the
resultof the optimizationwithout this constraint.The op-
timization problemwas solved using an active setmethod
similarto thatdescribedn Gill etals

The weight v entersthe termsin the A matrix aboe
non-linearlythusrequiringamorecomplicatecptimization
method.However, for motionsin our databasequr experi-
ences thatthevelocitytermmaleslittle effective difference
in the cost. Figure 2 shaws this insensitvity to v for tran-
sitioning from one dancemotion to anotherdancemotion,
with v = 0.1 andv = 10. In fact, the global minimum for
this motion wasunchangedsv wasvaried from 0 to 100.
Thus,v remainecdnein the optimizationprocess.

The normalizedweights(largestscaledto one)from the
optimizationprocessareshavn in Table1. The costmatrix
for the motionsusingthe optimalweightsareshavn in Fig-
ure 3. Thisfigureis for the samemotionsthathave the cost
matrixshavn in Figurel. Thereis substantiatlifferencebe-
tweenthe original weightsandthe new weights.In general,
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RightandLeft Hip 1.0000
RightandLeft Knee 0.0901
RightandLeft Shoulder 0.7884
RightandLeft Elbow 0.0247

Table 1: Joints with non-zeo weightsand their associated
weightswhensolvedas describedn thetext. Theoptimiza-
tion zeoedthe weightsfor the remainingjoints.
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Figure 3: Thecostmatrixfor two clips of dancemotionwith
optimizedweights.Each motionis 10 seconddong. Darker
valuescorrespondo lower costsfor transition.

the costwith new weightshasbecomemorerestrictive. Nu-
merically, the optimizationzeroedweightsassociatedvith
joints found to be unimportant.Most of the weightswere
foundto beunimportantonly the hips,kneesshoulderand
elbavs wereimportant.Theresultis consistentvith our ex-
pectationthat thosejoints arethe mostimportantones,but
surprisingnonethelessincethey imply therestareunimpor
tantin selectingareasonabléransition.

4, Evaluation
4.1. Cross-Validation

To estimatehe generalizatiomateof theoptimizedweights,
we emplo/edafull leave-one-outross-alidationstudy# In
this technique,the weights are optimized with one set of
trainingdatadeleted andtheresultingweightsarethenused
to computethe optimal value of a transitionfor the deleted
dataset. Recallthat our training set containeda rich vari-

Figure 4: Theanimatedcharacterusedin the userstudy

ety of motions.The resultsof this studywerequite encour
aging. The averagedeviation betweenthe full optimization
andthatof theleave-one-oubptimizationwaslessthanone
framein theanimationsequence§ hemediandeviationwas
zero frames.Additionally, we performeda similar test by
againdeletingonesetof trainingdata,re-computinghe op-
timal weights,andthencomputingthe optimaltransitionfor
acompletelydifferentmotionthanthe weightsweretrained
on, a dancingmotion from a different performercontain-
ing differentdynamics For this study theresultingweights
computedhe sameoptimaltransitionin 41 of 42 casesFor
thecasewheretheoptimaltransitionwasnotcomputedden-
tically to the othercasesijt wasoneframedifferent.Based
on theseempirical approachesye believe that the optimal
weightswe computedarebothrobustandgeneralizeo pick
reasonableransitionsfor a wide variety of motions.How-
ever, whetherthe optimalweightsarenecessarilpetterthan
theoriginal weightscannotbeverified by this techniqueln-
steadwe mustconducta userstudyto determingheresult.

4.2. User Study

A userstudywas conductedo evaluatethe weighting de-
terminedby the optimization. A motion capturesequence
of dancingwas createdby a performerdifferent from the
oneusedto capturethe motionsusedin Section3 for op-
timizing the weights. This practicewas emplo/ed to elim-
inate the possibility of ary performerdependeneffectson
theweighting.A frameof ananimatedsequenceisedin the
studyis shavn in Figure4.

The participantgroup consistecf 26 adultswith normal
colorvision who hadno prior experienceworking with ani-
mationoutsideof computergamesandthelike. Participants
in the studyweretold they would be viewing ananimation
of motion sequencesnd shavn an example animationof
awalking sequenceaisingthe modelthatwould be usedin
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theexperiment.They werethentold the motionsthey would

be viewing would have a discontinuityin the motion, and
shavn an example of an egregious discontinuity Partici-

pantsweretold they would be asled to ratehow noticeable
and naturalthe discontinuitieswere, both individually and
in comparisornto anothermotion. Participantswere shavn

two motions.Eachmotionwasa six-seconctlip; thetransi-
tion from the first motion sequencéo the secondoccurred
att = 3sin theclip. The motionsconsistedf the globally

optimum Lee costtransitionwith the weightsusedin Lee

at al.15, andthe globally optimumLee costtransitionusing

weightsdeterminedn Section3. Thesetwo motionswere
different,i.e., thelowestcosttransitionoccurredat different
pointsin the motionfor eachcostfunction.In particular for

the dancingmotion usedin the userstudy the optimaltran-

sition for the original costoccurredfrom frame91 to frame
281,whereagheoptimalcosttransitionoccurredrom frame
232to frame280.

The setsof motionsparticipantswere asled to compare
werethe original costversusthe optimal cost. To besteval-
uatethe transition, no interpolationor smoothingbetween
the sequencesvas done. Since a completeanimationsys-
tem,suchasthatpresenin avideogame will emplo/ some
sortof motiontransitionmechanismthisdecisionmayseem
odd.However, we believe thatthis decisionis necessaryor
thefollowing reasonsEmploying amotiontransitionmech-
anisminvolves making mary engineeringdecisionsabout
how the motionsareto be blended.For example,the time
over which the transitionwill occurmustbe specified.The
methodof blendingmustbedeterminede.g. linearinterpo-
lation, ease-inease-outpr emplgying a very sophisticated
mechanismsuchasin Roseet al.2! Additionally, somesort
of inversekinematicsroutine is usually required,because
blendingintroducesthe problemof foot-skateor foot-slide
(see for example,Kovar etal.l1). Therearea numberof in-
versekinematicgroutinesavailableié 1121 andeachof them
also makes engineeringdecisionsthat affect the quality of
theresultingmotion.

Additionally, blendingworks two ways. It canmaskthe
selectionof a badtransition(for example,it cansmootha
discontinuity),or it canmake a badtransitionextremelyob-
vious (for example,if the transitioncausesone part of the
body to intersectwith another) Which effect predominates
dependon the quality of the transitionselected Our work
tries to evaluatethe quality of transitionsin the absencef
the otherconfoundingfactorssuchasthe decisionamadein
creatingsmoothtransitions.Oncewe have empirically es-
tablishedthat a metric produceseasonabl®r goodtransi-
tions, thenwe canbegin to evaluatethe engineeringactors
associatedvith producingvisually compellingand optimal
transitions We note,however, for eachtransitionthe global
positionandorientationof the charactewasmatchedat the
point of transition.

We controlledfor ordereffectsin the presentatiofy ran-
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Comparison Mean  Std.Dev.

OptimizedWeightvs. Original Weight

LooksBetter? 2.73 1.00

More Natural? 2.69 0.84

Table 2. Summaryof resultsfor direct comparisonsof op-
timizedversusoriginal functions.Prefeencesvere ratedon
a scaleof zeo to four wheee zeo correspondedo looking
muc worse (or very unnatual) and four correspondedo
looking mud better (or very natural). For example partic-
ipantswere asled if they thoughtthat the optimizedmotion
“lookedbetter” thanthe original motion.

domly dividing the participantsnto two equal-sizedjroups.
The first group was presenteche original and optimized
weightedmotion sequencefirst, the secondwas presented
the optimally weightedmotion sequencefirst. After view-
ing eachsequenceparticipantscompleteda post-sequence
guestionnaireconsistingof six questionsasking them to
compareandrate their impressionf the motionsusinga
five-point Likert scale.Likert scaleresponsesather than
forced choiceresponsesvere chosento exploit the statis-
tical power the former offers in distinguishingsubtle dif-
ferencesUserswereasled which sequencseemedo have
betterquality, wasmorenatural,andcomparethe sequences
basedon the noticeabilityof thetransitions Whereapplica-
ble, the resultsof the userstudy were analyzedusing two-
way between-subjectsnalyse®of variance(ANOVAS). The
ANOVAs were 2 x 2 with the independentariablesbeing
costfunction and presentatiororder Resultswere consid-
eredsignificantif p < 0.05.

In generalparticipantonsideredheoptimally weighted
betterandmorenaturalthantheoriginalweighted Thesere-
sults are summarizedn Table 2. To supporttheseresults,
participantsalso found that the optimal transition for the
weightedcostto besignificantlymorerealisticthantheorig-
inal cost(F = 6.39,MS=6.94, p= 0.01).No significantin-
teractioneffectswerepresenin the orderingof the motions
for ary of thecomparisons.

5. Discussion

This papemroducedveightsfor the costfunctiondescribed
by Leeetal. thatled to the determinatiorof superiortransi-
tions. We cross-alidatedthe weightsto assesshe general-
izeability androbustnesof the optimizationprocedureWe
comparedhe optimizedweightswith the original weights
by running a userstudy The userstudy shaved that opti-
mizedweightsproduceperceptuallybettertransitionpoints.

However, there are several limitations and possible
sourcef biasin our results Whenoptimizingthe weights,
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our motion datadid not contain highly dynamic motions
suchas would be typical from a gymnasticfloor exercise
or othersourcesThe weightsmay not be a good predictor
of goodtransitionsfor suchmotions.It wasalsolimited to

16 different sequencesf motion for the optimization.We
would like to repeatour experimentsusing a larger library

with more dynamicmotion. Renderingstyle can affect the
quality of the perceved motionasshavn by Hodginsetal 8

Our weightoptimizationusedonly oneperformer although
our motionsweretestedin the cross-alidationandthe user
studyon motiongeneratedby a differentperformer Finally,

our motion datadid not containa large repertoireof “back-

ward” motions, which may have resultedin the position-
velocity weightv having maiginal impactfor the Lee cost.
Ourdatasuggesthatthevelocity componenbf theLeecost
is not significantfor a wide variety of motions.Remaing

thesdimitationsor betterunderstandingheir necessitys an
on-goingproject.

We are interestedin examining other cost metrics0 1
Thesecostmetricsarebasedn differentfeatureof motions
and how they arerepresentedWe wantto evaluatewhich
costmetric could pick the besttransitionpoint setsfor mo-
tion capturereusing.

We planto investigateheeffect of blendingontheseran-
sitionsaswell. As notedearlier blendingsmoothssomeof
the discontinuitiesin the motion. At leastfor linear inter-
polation, however, noticeabledifferencesare still apparent.
Therearethreemethodof smoothinghetransitionghatwe
wouldliketo understandbetterfrom aperceptuatiewpoint:
linearinterpolation(possiblywith ease-irease-out)filtered
smoothingusingthemachinerydevelopedn LeeandShin 14
anddynamicgeneratiorof transitionsasdonein Roseetal 2t
Theuseof atransitionmechanisnin conjunctionwith acost
metric may have someeffect on the weights,andwe would
like to determinewhatthateffectis, if it exists.

Additional topics for further researchinclude extending
the parametersf the userstudyto betterassesfiow people
perceve the transitionsandwhat characteristicgare impor
tantto themin determiningthe quality of the motions.Most
participantsin the study reportedthat the transition break
wasnoticeable Assessindiow aninterpolationschemem-
pactstheperceptiorof thetransitionis likely to beadifficult
task,but couldyield importantinsightsinto the characteris-
tics of visually compellingmotion.

The increasingrichnessof human charactersin three-
dimensionatomputelgameshouldmale transitionsn mo-
tion dataanincreasinglyimportantproblem.We believe that
theseresultsgive significantguidanceto thoseconcerned
with creatingvirtual humanswith a rich repertoireof be-
haviors, andmay helpin the re-useof large motion capture
data-sets.
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