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Abstract— The Sensory Ego-Sphere (SES) is a short-term mem-

ory for a robot in the form of an egocentric, tessellated, spherical, 

sensory-motor map of the robot’s locale.  This paper reports on: 

(1) the mapping to the SES of images with much higher resolu-

tion than the SES itself, and (2) the processing of visual attention 

on the SES.  Described is a procedure to store spatially-

overlapping imagery in the SES database and to generate and 

update a spherical composite of its visual contents.  The compos-

ite image serves both as a visual map of the locale and as a repre-

sentation of the local contents of the underlying full-resolution 

imagery.  Visual attention enables fast alignment of overlapping 

images without warping or position optimization, since an atten-

tional point (AP) on the composite typically corresponds to one 

on each of the collocated regions in the images.  Such alignment 

speeds analysis of the multiple images of the area.  Compositing 

and attention were performed two ways and compared: (1) APs 

were computed directly on the composite and not on the full reso-

lution images until the time of retrieval. (2) The attentional op-

erator was applied to all incoming imagery.  Then the locations 

and values of the APs on the composite were computed as a func-

tion of those points within the corresponding regions of the collo-

cated images.  It was found that although the second method was 

slower, it produced consistent and, thereby, more useful APs. 

I.  INTRODUCTION 

This paper reports methods for mapping images from a 

surrounding environment onto a robot's Sensory Ego-Sphere 

(SES), and employing attentional methods to the result. The 

SES serves as a short term memory for a robot and as an inter-

face to higher-level cognition, provided either by algorithms 

on the robot itself or by people teleoperating the robot [1]. 

Mapping images onto the SES is an important problem since 

the images can then be quickly recalled if needed, and apply-

ing attentional processes to these images is important in that it 

indicates where in the environment the robot or teleoperators 

may need to devote cognitive resources. Since the SES is a 

spatio-temporally organized database that records both sen-

sory and motor information, image data, if mapped appropri-

ately onto the SES, can provide resources for attention and 

cognition that supplement sensory-motor information.  
The SES is a virtual tessellated sphere centered at the ro-

bot's base frame, and its orientation remains fixed with respect 

to the world. As a robot moves its heading changes on the 

SES, and data can be moved from node to node based on the 

robot's movements and how the data is accessed. The SES 

thus simplifies the organization, storage, and retrieval of ego-

centric information. 

The tessellation used in the SES is geodesic and partitions 

space into a set of hexagonal or pentagonal cones that emanate 

from the frame.  We use a tessellation frequency of N=14, 

which partitions space into 1963 regions such that the angle 

between nodes is on the order of 4.5° - 5°.  Each vertex in the 

tessellation (one per cone) corresponds to a node, or index, 

into a database where sensory and motor data related to the 

region is stored.  For example, an object that has been visually 

identified in the environment is projected onto the sphere at 

azimuth and elevation angles that correspond to its location 

with respect to the SES frame.  A label that identifies the ob-

ject and other relevant information is stored into the database.  

The vertex on the sphere closest to an object’s projection be-

comes the registration node, or the location where the infor-

mation is stored in the database, as illustrated in Fig. 1. 

By virtue of its structure the SES has other capabilities in-

cluding the fusion of multimodal, multiresolution sensory in-

formation that emanates from a single localized source [5] and 

mobile robot navigation [6].  It also provides a display of the 

robot's locale-specific knowledge that can be of use to su-

pervisors or remote operators of the robot as well as persons 

who interact with the robot. 

A.  Imagery on the SES 

The SES has been used as a repository for defined ob-

jects, landmarks or sensory events (such as a sudden sound) 

that the robot has recognized and localized.  Raw imagery was 

not stored even though it was captured periodically for various 

control processes. It can be advantageous to store such im-

agery temporarily for subsequent processing or comparison.  

An N=14 tessellation is too coarse for point-wise storage of 

high-resolution data such as imagery.  However, blocks of 

high-resolution data (e.g.: a whole image) can be stored at 

each node.  This paper describes two methods of doing so. 

Both make use of visual attention processing to simplify the 

matching of overlapping images. 



 
Fig. 1.   Projection of an object onto the SES 

If, while capturing images, the robot or its camera head 

rotates, the set of images will form a panorama of the area 

covered by the field of view (FoV). By storing the images on 

the SES, a short-term visual memory of the scene is retained.  

Each image is stored in the database at the node closest to the 

camera's optical axis at the time of capture. (The time is stored 

with the image.) Multiple images may be stored at the same 

node to cause a visual history of the location to be compiled.  

Or, if only the last view is needed a new image can overwrite 

an older one.  By default, the SES stores the full image in the 

database.  The FoV of ISAC's cameras are approximately 55° 

horizontal and 45° vertical.  The ~4.5° spacing of the SES 

nodes results in considerable overlap between nodally adjacent 

images; in a fully imaged SES approximately 30 different im-

ages will overlap on any single node. Such redundancy may 

or may not be useful depending on the use of the imagery.  If 

no (or minimal) overlap is required, the image size could be 

cropped to store only a 5º-10º window centered on the optical 

axis.
1
   

It has been our experience that a graphical display of the 

contents of the SES can be quite useful to a person who is 

controlling or interacting with the robot.  Previously, various 

objects, sounds, surfaces, or the locations of end-effecter colli-

sions with them, etc. have been displayed as icons on a com-

puter graphic (CG) sphere.  This has been extended by dis-

playing a mosaic of imagery on the CG sphere.  Such a display 

permits a person to guide the robot to objects or to avoid ob-

stacles that the robot has not perceived. The mosaic is an ap-

proximate visual map of the locale.  It is a conformal map of 

foveal images taken from the full resolution versions at the 

various nodes.  These thumbnails are not warped or otherwise 

processed to present a smooth panorama since (we have ob-

served) the rough set can convey in real-time or near real-time 

information useful to an operator.  On ISAC, this results in a 

position error within ±2.25° in both directions. There are two 

formats for the mosaic: purely spherical and a spherical pro-

jection onto a plane.  Both methods index into the database 

where the images are stored.  
Current algorithms for image compositing and mosaic 

creation can create seamless panoramas [7], [8].  But these 

                                                 
1 Such a window is commonly called a fovea in the computer vi-

sion literature.  We will also refer to them as thumbnails even though 

they are cropped but not resized. 

 

require both feature matching and image warping.  The latter, 

especially, requires optimization and is computationally ex-

pensive.  Some work on real-time image mosaicing has been 

done recently by Lu et al. [9].  They state, however, that, “Our 

method is efficient for small local distortions. For large frame-

in-frame appearance transformation, our method can not guar-

antee the convergence, even with multiple iterations.”  The 

imagery projected onto the SES could exhibit small local dis-

tortions given a stationary robot and a relatively static envi-

ronment.  However, motion of the robot or objects in the envi-

ronment often causes older imagery to differ significantly 

from recently acquired images.  A presumption of small dis-

tortions cannot be made. 

B.  Visual Attention 

The SES is most useful in a control system comprising 

parallel independent computational modules.  If images are 

being captured, say for optical flow computation, and are sub-

sequently stored on the SES rather than discarded, other mod-

ules can search them independently for information.  For ex-

ample, object recognizers can peruse the imagery for charac-

teristic features.  If one of them recognizes an object, its pres-

ence can then be marked on the SES.  A module that detects 

change in the environment can compare incoming images to 

those already on the SES and flag differences.  To maximize 

the usefulness to such computational modules, a set of images 

distributed across the SES should be (at least) loosely aligned 

with respect to their content.  To minimize the computational 

complexity of alignment, easily discernible features should be 

used.  We use a simple visual attention network to select 

common features in overlapping images. 

Visual attention is a process that locates features in an im-

age that have high information content so that limited compu-

tational resources can be directed toward them.  Cave, [10] 

writes that attention “only allows a small part of the incoming 

sensory information to reach short-term memory and visual 

awareness, allowing us to break down the problem of scene 

understanding into rapid series of computationally less de-

manding, localized visual analysis problems.”  Cave assumes 

that information content is measured by visual salience, a sca-

lar measure of the conspicuousness or relevance of a pixel 

location.   A salience operator is defined in terms of those fea-

tures that are important to a particular task.   

For the purpose of image alignment, the choice of features 

is not as important as is the consistency of the attention algo-

rithm.  It should find the same features in separate images of 

the same area.  If, however, the attentional algorithm is se-

lected to find meaningful features, the benefit is two-fold:  not 

only can the redundant images be aligned, but also features of 

interest can be located and tagged.  We use Cave’s Feature-

Gate (FG) algorithm [10] because of its high flexibility in 

terms of feature selection.  (The choice of visual feature sets 

can be varied on-the-fly and is independent of the algorithm 

structure.)  With the appropriate features, FG has been demon-

strated to mimic human visual attention [11] as well as to be 

programmable to favor specific objects [12].  FG operates in 

parallel on a set of feature maps extracted from an image.  It 

returns a list of pixel locations, rank-ordered by salience.   



We tested the attention algorithm for two purposes: to 

find salient locations in the image mosaic and to select loca-

tions in images from the input stream that enable fast align-

ment with respect to features.  We found that the discontinui-

ties in the (unaligned) image mosaic generated spurious atten-

tion points. Attention applied to the input stream, however, 

was successful in aligning overlapping images. 

II. IMPLEMENTATION 

A.  Visual Attention 

 In the FG model of human visual attention, each location 

in the visual scene has a vector of basic features, such as ori-

entation or color, as well as an attentional gate that regulates 

the flow of information from the location to the output.  The 

gated flow depends on that location’s features and the features 

of surrounding locations.  The visual scene is partitioned into 

neighborhoods; a “winning” location in each neighborhood is 

passed to the next level.  This proceeds iteratively until there 

is only one location remaining, the output of the model.  FG 

contains two subsystems to handle bottom-up and top-down 

attentional mechanisms.  The bottom-up process identifies the 

most salient location in the scene based on feature-value dif-

ferences, and is independent of the task.  The top-down proc-

ess is task-related, a function of a target feature vector.  We 

did not use the top-down procedure because we were not look-

ing for a single location with a specific feature set.  Instead, 

we wanted to find a set of the most discernible locations in 

each image. 

 Salience is computed as the sum of the Euclidean dis-

tances between the feature vector, v(x,y), at pixel (x,y) and the 

feature vectors of its eight neighbors, v(xk,yk), 
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The salience image is partitioned into 2×2 blocks and the larg-

est value in the block is passed to the next level.  FG presumes 

that the greater the distance between the feature vector of a 

pixel and those of its neighbors, the more conspicuous that 

pixel is.  Top-down control would have the effect of further 

limiting the number of attentional points. 

B. Populating the SES 

 This work involved the mapping to the SES of 

320×240 (col×row) color images taken by the active pan-tilt 

camera-head of ISAC. A sequence of 519 images was gener-

ated using one camera by capturing an image at each of the 

pan-tilt angles that corresponded to an SES node.  The entire 

image was stored in the database at the node.  The images 

were not preprocessed and no particular objects were identi-

fied.  Since ISAC’s cameras do not rotate through 360 de-

grees, they do not map the entire SES.  A connected subset of 

the SES within the area of +20 to –60 degrees in tilt and +80 

to –80 degrees in pan was populated.  This range was chosen 

because the ±80º pan range is consistent with the human field 

of view [13].  The result was a complete mapping onto the 

SES of the forward visual scene.  

B. Mosaic Construction 

To create the mosaic, a foveal window at the optical cen-

ter of each image was extracted and posted on the SES at the 

corresponding node location. Fig. 2 illustrates this procedure.  

The exact size of each window depends on the specific node. 

Although similar, not all the edges on a geodesic dome have 

the same length.  For more precise results, the distances be-

tween each node and its 4 closest neighbors (top, down, left, 

and right) were calculated in degrees and converted to distance 

in pixels.  An appropriately-sized fovea was then extracted 

from the center of the image and was posted on the SES at the 

node corresponding to its pan-tilt angle pair.  Fig. 3 shows a 

spherical representation of all the foveal images posted on the 

Sensory Ego-Sphere with respect to ISAC’s camera frame. 
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Fig. 2.  Posting a fovea onto the SES 

A mosaic image of the scene was reconstructed from all 

foveal images posted on the SES.  A node map that associates 

each pixel in the mosaic image with a node on the SES was 

also generated.  A flat mosaic image is illustrated in Fig. 4.  

Note that if the mosaic is used only as a visualization tool, it 

need not be constructed on the robot.  The robot can transmit 

the thumbnails to a remote workstation where the mosaic can 

be generated. 

 

 
Fig. 3.  Thumbnails posted on a robot’s SES 

C. Attentional processing on individual images 

The problem of attention arises once the SES is populated 

with dense information. Two procedures were tested. One was 

to apply FG directly to the SES image mosaic (the mosaic 

method).  This was relatively fast but it found false disconti-

nuities. Moreover, it cannot align overlapping images.  The 

other approach (the whole image method) was to detect salient 

points within the individual images as they were captured and 

to combine them with the imagery that is already stored in the 

database. This simultaneously leverages the information in the 

overlapping images and estimates their overlap.   



Attentional processing was performed using FG on each 

image in the sequence.  The images were first blurred with a 

constant filter to reduce the sensitivity of the algorithm to in-

significant changes.  We implemented FG, with 12 feature-

maps: the 9 Frei-Chen features [14], except for 3×3 average 

value, R, G, & B color intensities, and pixel intensity.  The 12 

most salient locations in each image were recorded as atten-

tional points (AP) at the node corresponding to the optical 

center of the image.  The locations were stored together with 

their saliency values and the pan and tilt angles of the image.  

12 points were chosen because it was found that this usually 

resulted in a uniform distribution of APs throughout the im-

age.  

In Section I-A, we stated that as many as 30 images can 

overlap on a single SES node.  The overlap implies that APs 

from different images will often refer to the same location in 

space.  We estimated the visual importance of the various di-

rections by computing one salience value for each node of the 

SES.  This was done by combining the saliencies of all APs in 

the regions of the overlapping images that intersected the fo-

veal window at the node.  It was presumed that an AP that 

occurs in more than one image is more important (and should, 

therefore, have a higher value) than an AP found in only one 

image.  The absolute SES coordinates of each AP was com-

puted by converting its distance in pixels from the image cen-

ter to pan and tilt angles.  To those were added the angular 

location of the SES node.  Due to localization errors, APs 

from the same feature can be mapped to adjacent nodes. For 

each node with a least 15 associated APs, the median pan and 

tilt angles of the APs were calculated. All APs within a 2º ra-

dius from the median were then mapped to the same node on 

the SES. If more than one node fell within the circle, then all 

the APs were mapped to the node with the most APs.  
TABLE I 

ALL ATTENTIONAL POINTS THAT MAP TO NODE 1422 

Img 

CtrID 
Saliency Row Col ID New pan New tilt 

1302 3528.456 197 146 1421 -38.769 -26.631 

1626 4406/089 47 212 1421 -37.660 -26.918 

1624 3865.287 41 140 1421 -39.610 -25.835 

1421 3819.206 137 161 1421 -38.602 -26.537 

1682 4790.870 26 236 1421 -37.308 -27.323 

1340 3567.101 173 134 1421 -39.200 -26.030 

1424 4096.694 131 233 1421 -36.692 -27.320 

1679 4030.104 17 116 1421 -39.962 -25.698 

1501 4254.137 98 236 1421 -36.789 -27.576 

1303 4170.348 197 173 1421 -38.141 -26.680 

1733 4671.133 5 266 1421 -37.252 -27.576 

 A 2º radius was selected because it represents one-fourth 

of the average fovea and was compact enough to isolate point 

clusters.  An example of this is illustrated in Table I, which 

shows all original images (imgCtrID column) with an AP that 

maps to node 1421 (ID column) on the SES as well as each 

attentional point’s calculated pan and tilt angles.  

To determine the saliency of a node, the set of numerical 

saliency values from each AP posted at the node was summed.  

Fig. 5 shows the top 12 most salient locations (APs) in the 

scene (maxima over all the nodes).  

Fig. 5. Top 12 APs in scene by activation summation. 

D.  Attentional Processing on the Mosaic Image 

 We also tested the direct application of FG to the mosaic 

image. This process is much faster than the other because only 

one foveal image per node is processed rather than the entire 

set of complete images.  The FG algorithm was modified to 

include a node map of the mosaic image – an array containing 

the node ID of each pixel location in the image. Thus FG re-

turned not only the salient locations but also their node num-

bers.  The results for the same image set used in the first ap-

proach are shown in Fig.6. 

IV.  RESULTS 

A.  Activation Summation 

 Fig. 7 is a graph of activation threshold versus number of 

nodes.  It shows the number of nodes above threshold for val-

ues ranging from the minimum to the maximum total activa-

tion values per node.  672 nodes had attentional locations.  
Several thresholds were chosen and the percentage of nodes 

with activation above threshold level was computed.  The first 

three columns of Table II indicate the activation levels neces-

sary for a node to be a significant attentional location on the 

entire SES.  For example, to be in the top 10% of attentional 

locations, a node would have to have a summed activation 

value of al least 100000.   

 
Fig.6.  Top 12 APs by processing the mosaic image. 

Fig. 4.  Mosaic image constructed from SES thumbnails. 
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Fig. 7.  Number of nodes above specific activation thresholds. 

 Another way to determine the attentional importance of a 

node with respect to the entire SES is to calculate the percent-

age of individual APs with above-threshold activation that 

map to the node. There were a total of 6228 APs on the SES.  

The calculations were performed for several thresholds.  For 

example, if the nodes with activation values in the top 10% are 

chosen (threshold of 100000), the percentage of individual 

APs that map to one of them is 41%.  In other words, 41% of 

individual attentional locations map to the top 10% node loca-

tions on the SES.  The percentage calculations for different 

thresholds are listed in the last column of Table II.   

 
TABLE II 

Activation 

Threshold 

Nodes above 

Thresh. (NAT)  

Percentage of 

NAT 

% Attentional 

pts. at NAT 

27000 201 30% 77% 

45000 134 20% 65.3% 

100000 64 10% 41% 

 

 Another measure of the attentional importance of SES 

nodes is the percentage of attentional locations in the top N 

nodes.  This is similar to the percentage comparison above, 

except that a fixed number of nodes is chosen.  Regardless of 

the number of APs in a scene, only a fixed number of them 

can and should be attended to.  For example, 19% of individ-

ual attentional locations were found to map to the top 20 node 

locations on the SES.  In other words, the 20 most salient loca-

tions on the sphere represent 19% of all individual attentional 

locations.  Table III shows the number of attentional locations 

for several values of N. 
TABLE III 

N % attention points in top N node locations 

20 19% 

30 25.8% 

50 36.2% 

 

 Note that all of the images underlying a given fovea are 

effectively aligned by their common attention points.  Table 

IV shows that this tends to increases the saliency of a node. 

APs are first identified and posted at the appropriate nodes.  

The clustering procedure described on the previous page en-

sures that the points corresponding to a single image feature 

are mapped to a single node, thereby aligning the images on 

the foveal window of that node. 

B. Whole Images versus Mosaic Image Attention 

 Attentional points found through the whole image ap-

proach were compared to attentional points found over the 

foveal mosaic image.  This was done by processing the mosaic 

as a single image (e.g., Fig. 4) with FG to find the N nodes 

with highest activation.  When attentional processing is per-

formed on full-size individual images (as in section II-C), 

some attentional locations get mapped to nodes that do not 

correspond to an image piece posted in table tblSES.  This 

occurs in images taken at nodes lying near the edges of the 

visual scene.  These locations are not represented in the recon-

structed visual scene image. Therefore, the top N locations 

that correspond to a node in the mosaic image were found.  

The attentional locations found through summation of the ac-

tivation values in the complete set of images were then com-

pared to those found in mosaic image directly (Table IV).   

 Objects such as the panda, Barney doll, trash can, left side 

shelves, and chair had features that were considered salient by 

FG.  These objects were detected in both the summed activa-

tion image and the mosaic image.  Features with definite edges 

and corners, such as the black frames on the front wall and the 

black wall-strip (marked with an asterisk in figure 41) were 

also detected in both images. 

 
TABLE IV. 

MATCHING ATTENTIONAL NODES BETWEEN INDIVIDUAL IMAGE 

ACTIVATION SUMMING AND RECONSTRUCTED IMAGE 

N Number / % matching nodes in top N locations 

12 5 / 42% 

20 8 / 40% 

30 13 / 43% 

50 21 / 42% 

100 59 / 59% 

 

 The whole image method is better-suited to attention 

processing on the SES given the discontinuities in the mosaic 

image.  The mosaic method makes no use of the redundancy 

inherent in the multiple overlapping images. Moreover, updat-

ing the salience distribution on the SES as new images are 

captured is straightforward if the whole image method is im-

plemented.  Images can be processed as they are made avail-

able and the overall salient-point locations of the SES can be 

updated for the affected nodes.  The mosaic method, even 

though it contains less information requires more processing 

since the entire mosaic must be processed to find attentional 

points with the new fovea in place.  

 Experiments were performed to test the robustness of the 

whole image method for attentional processing.  A subset of 

the original visual scene was selected and image sequences of 

that scene under different illumination levels were generated.  

The number of matching nodes between sequences with dif-

fering illumination can be found in table V.  The low light and 

low spotlight illumination levels were very different from the 

high and medium light levels.  This accounts for the low per-

centage of matching nodes.  However, the percentage of 

matching nodes between the high light and medium light lev-

els were high, which indicates that the system will behave 

similarly when faced with moderately differing light levels. 

 



TABLE V 

MATCHING NODES PER ILLUMINATION LEVEL 

N High vs. 

Medium  

High vs. 

Low  

High vs 

Low Spot 

Medium 

vs. Low  

Low vs. 

Low Spot 

12 11/92% 6/50% 3/25% 7/58% 5/42% 

20 16/80% 10/50% 8/40% 11/55% 11/55% 

30 25/83% 19/63% 13/43% 22/73% 17/34% 

50 46/92% 39/78% 26/52% 42/84% 28/56% 

100 87/87% 76/76% 58/58% 75/75% 60/60% 

 

 

V.  CONCLUSIONS 

 This paper has presented procedures to map high-

resolution imagery on the SES and to perform visual attention 

processing on the SES.   A sequence of images that covered a 

visual scene was mapped to the SES.  A foveal window was 

extracted from the center of each image to create a mosaic 

representation of the scene on the SES. 

 Two approaches to visual attention on the SES were ex-

amined.  Both methods used the FG model of visual attention.  

The first method performed attentional processing on individ-

ual full-size images and mapped each attentional location to 

the nearest SES node.  A cumulative salience value was com-

puted for each node by summing the salience values of the 

attention points at each node.  This approach results in rea-

sonably consistent and stable attentional points since they are 

combined from a number of different images of the same an-

gular region of space.   An attentional point that appears in 

several adjacent images is deemed to be more salient than one 

found in a single image.  Larger activation values are assigned 

to SES nodes that contain APs visible in several images.   The 

other approach was to process the thumbnail mosaic image 

with the attentional algorithm.  The results of this were prob-

lematic, containing spurious APs and missing others. 

 To test the first method further, scene images were taken 

under different illumination levels. For reasonable illumina-

tion variations, the majority of attentional locations persisted.  

In future work, this method will be implemented on a human-

oid robot and used in real time.  The bulk of the processing 

time is due to the Frei-Chen filters used to create feature maps 

of the images.  When the number of orientation filters is re-

duced from 8 to 4, the processing time is approximately 2-3 

seconds per image.  This time could be shortened by revising 

and optimizing feature detection and the particular implemen-

tation of FeatureGate.  Note that the memory requirements for 

storing imagery on SES are not expensive:  approximately 

120MB for a partially populated SES (as is used on the sta-

tionary robot ISAC), and 4.5GB for a completely populated 

SES.   

Updating the salience of the SES as new images become 

available can be done with relative ease by processing the new 

images separately and by combining their APs with those  

 

 

 

 

already present.  The activation at each node could be weighed 

by the age of each attentional point, giving more weight to 

newer points. 

 The work presented in this paper can be used to map a 

robot’s environment in a meaningful way. It can also be used 

to direct the robot’s attention to the potentially salient areas of 

that environment by combining attention information taken 

from sensors.  The attention information is taken from images 

in this work, but this can be extended to other sensory modali-

ties such as infrared and sound.  
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