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Superpositioning of Behaviors
Learned Through Teleoperation
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William J. Bluethmann, Eric Huber, and Robert O. Ambrose

Abstract—This paper reports that the superposition of a small
set of behaviors, learned via teleoperation, can lead to robust
completion of an articulated reach-and-grasp task. The results
support the hypothesis that a robot can learn to interact purpose-
fully with its environment through a developmental acquisition
of sensory-motor coordination. Teleoperation can bootstrap the
process by enabling the robot to observe its own sensory responses
to actions that lead to specific outcomes within an environment. It
is shown that a reach-and-grasp task, learned by an articulated
robot through a small number of teleoperated trials, can be
performed autonomously with success in the face of significant
variations in the environment and perturbations of the goal.
In particular, teleoperation of the robot to reach and grasp an
object at nine different locations in its workspace enabled ro-
bust autonomous performance of the task anywhere within the
workspace. Superpositioning was performed using the Verbs and
Adpverbs algorithm that was developed originally for the graphical
animation of articulated characters. The work was performed on
Robonaut, the NASA space-capable humanoid at Johnson Space
Center, Houston, TX.

Index Terms—Dexterous manipulators, intelligent robots, non-
linear functions, robot programming, telerobotics.

1. INTRODUCTION

HE paper deals with the problem of enabling a robot to

learn from experience by building models of the dynamics
of its own sensory and motor interactions with objects and tasks
[1]. This interaction is initially provided by fine-grained teleop-
erator inputs. Over time, information gleaned from teleoperator
guidance is compiled into autonomous behaviors, so that the
robot can perform tasks on its own, and so that the level of dis-
course between operator and robot can become more abstract.

A. Approach

The approach described here builds on the self-organization
of sensory-motor information in response to a robot’s actions
within a loosely structured environment. In [2], Pfeifer reported
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that sensory data and concurrent motor-control information
recorded as a vector time series formed clusters in a sen-
sory-motor state space. He noted that the state-space locus of
a cluster corresponded to a class of motor action taken under
specific sensory conditions. In effect, the clusters described a
categorization of the environment with respect to sensory-motor
coordination (SMC).

An exemplar of an SMC cluster corresponds at once to a basic
behavior (as used implicitly by Brooks [3] and later defined by
Matari¢ [4]) and to a competency module in a spreading acti-
vation network [5]. The latter is a specific example of a more
general class of topological, action-map representations of an
environment [4] which can controlled by discrete-event dynam-
ical systems (DEDS) [6], [7], with transition probabilities given
by Markov decision processes. If the state space is parameter-
ized by time, the clusters are collections of trajectories, and an
exemplar is a single representative trajectory through the space.

Thus, if a robot is controlled through an environment to com-
plete a task while recording its SMC vector time series, the result
is a state-space trajectory that is smooth during the execution of
a behavior, but that exhibits a corner or a jump during a change
in behavior (an SMC event). From this, a DEDS description of
the task can be formed as a sequence of basic behaviors and the
transitions between them. The task is learned in terms of the
robot’s own sensors, actuators, and morphology.

The autonomous execution of fixed motor trajectories by a
DEDS controller that changes state in response to SMC events
will fail if the operating environment differs significantly from
the learning environment. On the other hand, if a set of trajecto-
ries is learned that bounds or covers the variations of the task, the
task might be performed successfully under more conditions.
In particular, a new situation might be successfully negotiated
through a superpositioning of the bounding trajectories.

This paper reports the results of learning to reach toward
and grasp a vertically oriented object at an arbitrary location
within the robot’s workspace by superpositioning a set of SMC
state-space trajectories that were learned through teleoperation.
The ideas behind the procedure are based on a number of as-
sumptions: 1) when a teleoperator performs a task, it is her/his
SMC that is controlling the robot. So controlled, the robot’s sen-
sors detect its own internal states and those of the environment
as it moves within it. Thus, the robot can make its own associa-
tions between coincident motor actions and sensory features as
it is teleoperated; 2) in repeating a task several times, a teleop-
erator will perform similar sequences of motor actions whose
dynamics will depend on his/her perception of similar sensory
events that occur in a similar sequence. As a result, the robot
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will detect a similar set of SMC events during each trial. There-
fore, each trial can be partitioned into SMC episodes, demar-
cated by the common SMC events; 3) sensory events that are
salient to the task will occur in every trial; sensory signals that
differ across trials are not significant for the task and can be ig-
nored. By averaging the time series for each episode pointwise
over the trials, a canonical representation of the motor-control
sequence can be constructed. As a result of the averaging, true
events in the sensory signals will be enhanced, and those that
are random will be suppressed.

This approach does not form an approximation of the inverse
kinematics (IK) of the manipulator. Rather, it learns six-axis
spatial end-effector trajectories that are sent as position com-
mands to the robot, which computes its own IK. This somewhat
higher level approach extracts Cartesian motion and pose trajec-
tories, finger position trajectories, and sensory state information
to create a sensory-motor (or, perhaps more accurately, a sen-
sory-motion) description of the task.

B. Related Work

This work extends that reported by Peters et al. in [8], where
a single trajectory was learned over six trials that could later be
performed autonomously with success in the face of small varia-
tions in the environment or perturbations of the goal. In addition
to Pfeifer [2], many others have studied the extraction of SMC
parameters, including Cohen [9], [10], Grupen [11], and Peters
[12]. Like Pfeifer, Cohen concentrates on learning categories
from random behaviors. However, he manually designates the
episode boundaries, and uses categorization techniques to find
similarities between the episodes. While such clustering may
become important as more tasks are incorporated, the behaviors
in this paper can be automatically clustered by their locations in
the task sequence.

Grupen experimented with DEDS of parallel controllers that
are, in some respects, quite similar in theory, to the autonomous
parts of the work described here. His systems use, but do
not learn, low-level SMC trajectories for motion control, and
have mainly focused on grasping and dexterous manipulation.
Grupen uses collections of closed-loop controllers preselected
and preprogrammed for variations on a task. The controllers are
invoked through a DEDS implemented as a Markov decision
process to complete a task. The approach enables an articulated
manipulator to perform more complex manipulation tasks than
that described in this paper. However, the controllers must be
designed manually, they are not learned.

In many respects, however, our work is fundamentally dif-
ferent from that of Grupen. We create exemplar trajectories of
the end-effector (hand point-of-reference (POR), six-axis pose)
and finger joint positions from a small number of repeated, tele-
operated trials of the same task performed at different loca-
tions in the workspace. The trajectories exist in a sensory-motor
state space, since the target position is specified by vision, and
the grasp elicits a response from force-torque and haptic sen-
sors. After offline analysis, these trajectories are recombined in
real time to perform the same task at any location within the
workspace. With regard to manipulation, there is little doubt that
this approach is not as robust as that of Grupen; ours, however,
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requires no controller design. Grupen’s work appears to be com-
patible with that described here, as discussed in Section VI.

The use of motion data to plan robotic motion is a problem
that has been studied by Matari¢ [13], Jenkins and Matarié
[14], Ude et al. [15], Pollard et al. [16], and Atkeson et al. [17].
Matari¢ and Jenkins have enabled a simulated humanoid to
learn unconstrained motion patterns from human motion-cap-
ture data. (Our work modifies one of their segmentation and
data normalization procedures.) Jenkins has further studied the
creation of new motions through the interpolation of learned
trajectories using Isomap [18]. In [15]-[17], Ude, Pollard,
Atkeson, and their coauthors describe a system that learns
from demonstration through vision. They enabled the robot DB
(from the Kawato dynamic brain project) to watch a person
perform a task several times and then do the task itself. Through
various analysis techniques, the person’s motions as perceived
by the robot vision system are mapped onto a set of motion
primitives. These are similar in concept to Matari¢’s basis
behaviors [4], but contain only motor components. The motion
primitives themselves do not contain sensory information. A
task is learned by selecting those primitives that combine to
best match the image of the perceived motion. The combination
is constrained by a model of human motion and some regular-
ization terms. Thus, perception itself becomes an optimization
process that tries to find an underlying motor program to mimic
the motion. Through these approaches, DB can learn a number
of complex full-body articulated motion tasks.

In our opinion, learning from observation is an important and
difficult problem. The approach described here is, in some re-
spects, simpler than those described above, and thereby avoids
some of their difficulties. Since our robot learns sensory-motor
trajectories through teleoperation, it learns its own motions and
sensory responses directly. It does not have to map remote ob-
servations of a far more dexterous machine, a person, into its
own limited degrees of freedom (DOFs). Moreover, the authors
cited above have enabled their systems to learn large-scale, rel-
atively unconstrained motions such as dancing, punching, and
playing ping pong. Our approach enables learning of the more
highly constrained motions required for grasping. Another dif-
ference is that they learn only the motion, not the accompanying
sensory percepts.

II. ROBOT HARDWARE

The experiments for this paper were performed on Robonaut,
NASA’s space-capable, dexterous humanoid robot (see Fig. 1).
Robonaut was developed by the Dexterous Robotics Laboratory
(DRL) of the Automation, Robotics, and Simulation Division
of the NASA Engineering Directorate at Lyndon B. Johnson
Space Center in Houston, TX [19]. In size, the robot is compa-
rable to an astronaut in an extra-vehicular activity (EVA) suit.
Each 7-DOF Robonaut arm is approximately the size of a human
arm, with similar strength and reach, but with a greater range
of motion. Each arm mates with a dexterous end-effector, a
12-DOF hand, to produce a 19-DOF upper extremity. The robot
has manual dexterity sufficient to perform a wide variety of tasks
requiring the intricate manipulation of tools and other objects.
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Fig. 1.

Robonaut, NASA’s space-capable humanoid robot.

Robonaut has many sensors. These include a color, stereo
camera platform embedded in a head mounted on a 3-DOF neck,
and binaural microphones located on opposite sides of the head,
parallel to the stereo camera baseline. The two hand/wrist mod-
ules contain 84 sensors for feedback and control, 60 of which
are analog and require signal conditioning and digitization. Each
DOF has a motor position sensor, a joint force sensor, and a joint
absolute position sensor. The two arm modules contain 90 sen-
sors, 80 of which are analog. Each actuator contains a motor
incremental position sensor, redundant joint torque sensors, re-
dundant joint absolute position sensors, and four temperature
sensors distributed throughout the joint. Each arm employs rel-
ative optical encoders in five of its joints. The encoders reside
on the motor side of the gear train and have resolutions ranging
between 200 and 1000 counts per degree of arm motion. The
two wrist joints employ resolvers integrated into the motor as-
semblies (see [20] for a more detailed description of the Robo-
naut mechatronics.) A variety of data signals are recorded from
Robonaut during teleoperation. These are listed in Table I. They
are recorded at a nominal rate of 50 Hz, but some signals, such
as those produced by vision, are slower.

Robonaut is physically capable of autonomous operation.
At this time, however, it is most often controlled directly by a
person via teleoperation. In this mode, every motion made by
Robonaut reflects a similar motion made by the operator, who
perceives the robot’s workspace through full-immersion virtual
reality. The operator wears a helmet that enables her or him to
see through the robot’s stereo camera head and to hear through
the robot’s binaural microphones.! Sensors in gloves worn by
the operator determine Robonaut’s finger positions. Six-axis
Polhemus sensors [21] on the helmet and gloves determine
the robot’s arm and head positions. An operator guides the
robot using only vision; there is neither direct haptic nor direct
force feedback from robot to person. That is, the robot’s haptic

I'The robot has microphones for terrestrial use; radio would be used in space.

TABLE 1

SIGNALS RECORDED FROM ROBONAUT
Signal Dimension
End-effector position, actual 3
End effector rotation mat, actual 9
Arm orbit angle, actual 1
End-effector position, requested 3
End effector rotation mat, req'd 9
Arm orbit angle, requested 3
Arm 3-axis force on wrist 3
Arm 3-axis torque on wrist 3
Arm 3-axis force on shoulder 3
Arm 3-axis torque on shoulder 3
Arm joint positions 7
Arm joint torques 7
Hand force on fingers 5
Hand joint positions 12
Hand joint torques 12
Hand tactile sensors 19
Visual object name 1
Visual object pose 6
Teleoperator voice command 1

sensors do not transmit touch sensations to the operator, nor do
the force sensors project forces onto the operator’s gloves.2

Each 7-DOF arm is commanded independently by specifying
the 6-D Cartesian pose (position and orientation) of its hand’s
POR. The POR is located on the back of the hand so that it cor-
responds to the location of the Polhemus sensor on the corre-
sponding teleoperator glove. Usually, the seventh DOF is com-
puted by an IK algorithm that minimizes joint velocities. The
operator can, by specifying an angle, command the elbow orbit
position if the IK algorithm computes one that is problematic for
the desired motion in the current environment. The elbow posi-
tion is specified by the angle between the plane formed by the
shoulder, elbow, and wrist, and the vertical plane of right—left
symmetry of the robot.

Robonaut’s arm—hand systems have a high-bandwidth dy-
namic response (the servo control loop operates at 50 Hz) that
enable it to move quickly, if necessary, under autonomous oper-
ation. During teleoperation, however, the response of the robot is
slowed to make it less susceptible to jitter in the arms of the tele-
operator, and to make it safe for operation around people, either
unprotected on the ground or in pressurized EVA suits in space.
The slowdown is, effectively, to a 10-Hz loop with the teleop-
erator. The purposeful limitation of maximum joint velocity af-
fects not only the motion analysis described below, but also the
superposition of learned behaviors, especially with respect to
the time warping of component behaviors (cf. Section III-C).

The Robonaut stereo vision system uses object shape to
determine the six-axis pose of well-defined objects, such as
wrenches and tables, as well as variable-form structures, such
a human limbs [22]. The robot’s field-of-view (FOV) is pre-
processed using patch correlation on Laplacian-of-Gaussian
(LoG)-filtered image pairs to generate 3-D range maps, as well
as binary, 2-D range maps taken over a series of range intervals.
Initially, four DOFs of a known object are estimated roughly

2Several approaches to supplying such feedback have been tried. None of
them improved the performance of the teleoperator acting through vision alone.
Indirect feedback in the form of visual force displays are being tested.
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through an efficient matching of large sets of 2-D silhouette
templates against the 2-D range maps. This estimate is refined
to give a more precise pose estimate in all six DOFs. The
strongest silhouette matches are used to seed a process which
matches 3-D sets of contour templates against 3-D range maps.
Although considerably more expensive computationally than
2-D, a 3-D process is necessary for the robot to handle and
manipulate objects. A high level of precision is obtained in real
time, because most of the environment is filtered out by the
much faster 2-D silhouette matching process.

After low-pass filtering, the outputs with a time constant of
about 0.2 s (finite-impulse response (FIR) averaging), the vision
system is accurate to within 0.003 m and 2.0° in the workspace
of the robot. This is as measured relative to an object with a
calibrated pose. The general accuracy of the system in deploy-
ment is within about 0.015 m and 5°. Currently, most estimation
error is caused by the correlation mismatches on surfaces that
are metallic (reflective) or low in texture (e.g., a black plastic
drill handle). The system outputs the poses of recognized ob-
jects within its FOV at a rate of about 7 Hz. The overall latency
through the system (photons hitting lens to vision system Eth-
ernet output) is about 0.22 s. Latency from vision output to robot
actuation is approximately 0.38 s.

Although the teleoperator may be unaware of most of it, all
sensory data is available in real time for the robot’s computers to
analyze. In particular, from the data, the robot can learn the sen-
sory characteristics of tasks performed via teleoperation. That
information can, in turn, be used by Robonaut in autonomous
operations.

III. BEHAVIOR SUPERPOSITION

There were four phases in the data gathering and analysis for
this learning task.

1) A teleoperator controlled the robot through the tasks that
would serve as examples. Five trials at each of nine lo-
cations were performed of a reach-and-grasp of a verti-
cally oriented object (a wrench). As the teleoperator per-
formed these example motions, Robonaut’s sensory data
and motor command streams were sampled and recorded
as a vector time series or signal.

2) The SMC events common to all trials were found and used
to partition the signal into episodes. The episodes were
time-warped, so that the jth episode in the kth trial had the
same duration (and number of samples) as the jth episode
in every other trial (cf. Section III-C.)

3) The signals were averaged over all five trials at each lo-
cation to produce a canonical, sensory-motor data, vector
time series for each location. This approach is similar both
to that of Jenkins and Matari¢ [14] and to those analyzed
by Cohen [10].

4) These generalized motions were combined using the
process described by Rose et al. [23], called Verbs and
Adverbs (VaV).

When the process completed, the resulting set of parameters
could be saved to file and then used to create a general represen-
tation of the task that was adaptable under real-time conditions.
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Fig. 2. Plot of the nine exemplar object locations from the robot’s viewpoint.
The dark-shaded regions are the bounding surfaces of workspace volume
delineated by eight of the points. The contour is the end-effector trajectory
from one trial of the experiment, where the object was at the ninth position,
in the center of the box. The arrowheads indicate the direction of motion.
The inset shows the grasp, hold, and release episodes in greater detail. They
are: (a) reach, (b) grasp, (c) hold, (d) release, (e) withdraw.

A. Teleoperation

The task performed by the teleoperator was, with the right
arm, to reach forward to a wrench affixed to a frame, grasp the
wrench, hold it briefly, release it, and withdraw the arm. The
frame made it possible to reposition the wrench as needed, while
keeping it steady during task performance. For the purposes of
these experiments, the wrench was positioned in a reachable,
nearly vertical position. Nine example locations were chosen.
Eight of these were positioned approximately at the corners of
a virtual box that defined the limits of the reachable workspace.
The ninth was a point near the middle of the box. Five trials were
repeated at each of the nine locations.

Fig. 2 shows a 3-D plot of the locations, with lines drawn to
indicate the box, which is a warped parallelepiped. The curve in
the middle is a plot of the end-effector’s POR throughout one
of the five trials where the object was at the central position.
The box is depicted from the viewpoint of one of Robonaut’s
cameras. The coordinate frame used for all Cartesian locations
in this paper is centered on Robonaut’s chest. The x axis points
out, the y axis points right, and the z axis points down. Note in
the figure that the y dimension of the box is much longer than
the x and z directions.

B. Segmentation

A vector time series

vi(t) =[si1 sin ]’ (1) ey
was recorded during each teleoperated trial of the task. The time
series contained N separate signals, s; ;(¢) from the various sen-
sors and actuators. The signals and their dimensions are listed
in Table L.

The time-series data from the experiment was manually seg-
mented into 45 trials, according to markers embedded in the
voice channel of the robot’s data stream. Then each trial was
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Fig. 3. Right arm and hand joint positions during a single trial at a single
location plotted with respect to time. The three thumb DOFs are summed, as
are the nine finger DOFs. The episode boundaries are demarcated as vertical
lines. They are (L to R) the period prior to motion, reach, grasp, hold, release,
withdraw.

partitioned into five SMC episodes? (reach, grasp, hold, release,
withdraw) demarcated by SMC events that were found through
an analysis of the mean-squared velocity (MSV) of the joint an-
gles «;

e=) 4} @

the sums of the squares of all the joint velocities in the arm—hand
system [24]. Changes in velocity are apparent in the joint posi-
tion profiles of a single trial, as shown in Fig. 3.

An SMC event was defined as the beginning or end of a suf-
ficiently large peak in the MSV, since that corresponded to a
significant acceleration or deceleration in the arm—hand system.
The beginning of a peak was marked at time ¢, if: 1) z(¢g) ex-
ceeded a threshold ¢; and 2) z(t) exceeded 15¢ at a later time

3In this work, the trials were demarcated manually, and each trial was seg-
mented automatically into episodes. The trials could have been likewise ex-
tracted automatically, but were not, since episode extraction was the focus of
the work.

t; > to before 3) falling below the lower threshold ¢ again at
a still later time £ > ¢;. That is, an SMC event was marked at
time ¢q if

z(to — 1) < ¢ AND z(tg) > ¢ AND z(t;) > 15¢  (3)

for some ¢, > to, providing that z(t) > c for all t € (tg,t1).
The end of the peak was detected at time ¢o if

2(ts —1) > ¢ AND 2z(t2) < c AND z(t;) > 15¢  (4)

for some ¢1 < to, providing that z(t) > c forall t € (¢1,t2).

A threshold of ¢ = 0.02 deg /s? was derived empirically as
the fifth percentile of a sampled distribution of measured ac-
celerations. That is, let z be the largest value of z measured
throughout the trials. The value of ¢ was increased from 0.0012
to 0.12 in increments of 0.001Z. For each ¢, define the set of
times T, = {t|2(¢) > c}. Then compute the mean and stan-
dard deviation of the set Z. = {2(¢t)|t € T.}. As c increases,
the number of points in Z. decreases, while the mean value of
Z. increases. Moreover, the data in Z. becomes dominated by
values from the peaks which vary from one another more than
do those points that are closer to zero. As a result, the standard
deviation of Z,. increased (roughly) logarithmically with ¢, but
levelled off at an asymptote of approximately 0.62. The 95th
percentile, 0.57%, was reached at ¢ ~ 0.02. The factor of 15
was used for the upper threshold because it yielded the number
of episodes that were expected (see Fig. 4).

The MSV was found to be an excellent indicator of the grasp,
hold, and release events if the hand joint velocities were in-
cluded in it. It was not reliable in detecting those events if only
the arm joint velocities were included. The vector time series
between two SMC events were taken as SMC episodes that cor-
responded to distinct behaviors.

C. Time Warping: Normalization and Averaging

Once the segmentation of the data was complete, the SMC
episodes that comprise the task were time-warped through re-
sampling to have a duration equal to the average duration of the
45 trial episodes. Then for each of the nine locations, the average
vector time series was computed from the five corresponding
trials. For example, the reach behavior averaged 150 time steps
across the 45 trials. Each of the time series that comprised the
reach episodes was time-warped and resampled to have length
150. The five reach episodes from the five trials at each location
were averaged to create nine exemplar reach episodes, each with
150 samples in duration. Fig. 5 shows the trajectories from the
five trials at one location and the average of the five.

In these experiments, we used a pointwise linear averaging
of the time-normalized sensory-motor episodes to produce an
exemplar for the task. The effect of averaging the five trials at
each location was to enhance those characteristics of the sensory
and motor signals that were similar in the five, and to diminish
those that were not. One could use the median value at each
point, if a minority of the exemplars showed deviations due to
noise or other mismeasurement. Moreover, signals that exhibit
nonlinear behavior with respect to time (e.g., a binary or on/off
signal) would require a median or other order-statistic filter to
preserve the signal characteristics. Certainly, averaging would
produce a skewed result if one of the exemplar episodes were
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Fig. 4. Plot of the instantaneous mean-squared joint velocities z for one teleoperated trial at one object location. The lower and upper thresholds, ¢ and 15¢, are
indicated by horizontal lines. The episode boundaries (pre-motion, reach, grasp, hold, release, withdraw) are demarcated by vertical lines.
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Fig. 5. Thin lines: the hand POR trajectories in the 2y plane over the five
trials at one location. Thick line: the exemplar POR trajectory constructed as
the pointwise average of the five trials.

significantly different from the others to be combined with it.
However, it was a premise of this work that such episodes would
not differ significantly from each other in their salient features.
If that premise were incorrect, the characterization of a behavior
through the type of analysis described here would be of dubious
value. But the premise was found to hold throughout these par-
ticular experiments.

Through the four-step procedure (cf. Section III), nine sen-
sory-motor state-space trajectories were created. These were
taken to be the exemplars of the clusters formed by the five trials
of the reach-and-grasp task at each of the nine locations.

Given the dynamics of Robonaut under teleoperation (its
maximum velocity is limited), the durations of the episodes
are relatively long and the sampling rate well exceeds the
Nyquist limit. Thus, the salient sensory-motor characteristics
are well represented in all the trials at each of the locations,
and time-warping for episode normalization preserves those
characteristics. This would not necessarily be the case if the
sampling rate were near the Nyquist limit, and some of the
episodes were of short duration.

D. Superposition Using Verbs and Adverbs

After the resampling and averaging of the sensory-motor data
from the example tasks, the data were analyzed to characterize
the motions that would enable Robonaut to reach toward and
then grasp, with its right hand, a vertically oriented wrench any-
where within its workspace. This was done with an interpola-
tion method called Verbs and Adverbs, developed in the com-
puter graphics community by Rose et al. [23]. The following
description is an adaptation for robotics of the algorithm from
that paper. Table II lists symbols used in the description.

A verb in this implementation of the algorithm is the mo-
tion component of a task exemplar, its motion trajectory in the
sensory-motor state space. Let 7 C R be a set of consecutive
sample times. Let S represent the motion state space dim(S) =
N;. Define m;(t) : 7 — S to be the value at time ¢ of the
motion-state trajectory of the ith exemplar. Let m; € S x 7
represent m;(¢) over all time, the trajectory in its entirety. Let
m represent an arbitrary motion-state trajectory.

An adverb p is an N,-dimensional vector in adverb space .4
that characterizes in some way a particular motion trajectory m.
The adverb is a specific parameterization of the motion trajec-

tory. Thus, by implication, there exists a mapping
P A-SxT ®)

such that

m; = ®[p;] (6)
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TABLE II
SYMBOLS FOR VAV ALGORITHM
Symbol | Dimension Meaning

A N, adverb space, N, = no. comp’ts. per adv .

& Ne exemplar state space, /N, = no. of exemps.

S N, motion state space, Ny = no. of states

SxT Ny+1 motion state trajectory space
D[ (Ns+1)x N, exact mapping from Ato S x T
D(t)[] NexNa exact mapping from A to S at time ¢
Alt Nyx(Na+1) LMS approx. of ®(t), rows: a! ()
M(t) Nox N exemp. state mat: cols: m;(t), rows: n] (f)
M(t) NoxNe resid. mat: cols: m;(t), rows: @] (t)

P NoxNe adverb exemplar matrix, cols: p;

P (Na+1)xNe hom. adverb exemplar matrix, cols: p}'
Q(t) Nex N interp. mat., col. j: RBF amps. for state j
R(t) NexNe matrix of RBF vals. at adv. locs at time ¢
a;(t) N, +1 affine coeff. vector that maps p” to m;;(t)
@) N, interp. function that maps p; to m;(¢)

m Ns+1 trajectory of motion state vector; C S X 7

m; Ns+1 traj. of motion state exemplar ¢; C S x 7
m(t) Nj motion state vector at time ¢; C S

m(p;t) Ny state vect. of motion with adv. p at time ¢

m Ny +1 LMS approximation of motion state traj.

m Ns+1 motion state residual: m —mi
n;(t) N, vect. of state j from all exemps. at time ¢
n;(t) N, LMS approximation of n;(t)

n;(t) N, state j residuals n;(t) —n;(t)
p N, adverb space vector: an adv., or adv. loc.
P; N, adv. corresponding to exemplar motion %
h N, +1 homogeneous p;; p! = [I p} "
q N, vector of RBF amplitudes, 1 per exemplar
r(p) N, vect. of exemplar RBF intensities, 7;(p)
T 1 set of consecutive time steps C R
Bi 1 decay constant for RBF at adv. p;
m;;(t) 1 jth component of (state in) m,;(#)
pi(p) 1 distance from exemplar adv. p; to p € A
ri(p) 1 mag. at p of RBF located at adverb p;

T4 1 7;(p;), intensity at jth adv. of ith RBF

for each of the N, exemplar motion-trajectory-plus-adverb pairs
(m;, p;). Generally, the mapping is unknown for trajectories
other than the exemplars. The VaV algorithm, in effect, com-
putes ® to find a trajectory m for a given parameterization p.

In [23], several example motions were created for articulated
characters. The mapping of these motions into a multidimen-
sional adverb space defined extremal points along axes of the
space. A particular adverb extremum characterized the appear-
ance of the associated motion. To create motions that exhib-
ited combinations of the characteristics, a location in the adverb
space was selected and mapped back into the motion space. In
the work described here, the adverbs are the 3-D Cartesian world
coordinates of the object to be grasped (the wrench). Exemplar
reach-and-grasps were acquired near workspace extrema for the
robot’s right arm. To perform the operation at other locations in
the workspace, the VaV algorithm was used to interpolate the
exemplar motions.

The algorithm projects the motion exemplars at each time ¢
onto an N, + 1-dimensional, linear subspace of the motion state
space S. That subspace is the range of a matrix A(t) that is
the least-mean-square (LMS) approximation of ®[-](¢). Since
®[-](¢) is nonlinear, and because the dimension of the adverb

space is usually much smaller than that of the motion state space,
the projection through A(t) is inaccurate. In fact, the exemplar
adverbs are not mapped by A(t) to their corresponding motion
trajectories. To compensate, a radial basis function (RBF) inter-
polation operator is defined that restores the exemplar’s compo-
nents lost in the projection. Given a new adverb (in this case, a
new grasp location) p the corresponding motion m(t) is found
by computing m(t¢) = A(t)p, then adding to that the RBF inter-
polation of the exemplars that is indicated by p. This approach
permits a limited extrapolation of the data, since the subspace
projection can construct new trajectories that extend parametri-
cally beyond the exemplars.

1) Linear Approximation: The LMS subspace is found by
deriving an approximation of ®(¢) directly for each time step
(sample) of the exemplars. Since the ith motion exemplar m;
is functionally related to the sth adverb p; (forz = 1,..., N,),
each state m;;(t) (for j = 1,..., N,) at each instant ¢ is like-
wise related to p;. Assume the relationship is first order (affine).
Then at time ¢, state j of exemplar ¢ is related to the ¢th adverb
through a vector of coefficients a;(t) € R x \A, as follows:

a;(t) (N

T
mij(t) = [p}]
where p? = [1pF]? is a homogeneous representation of the

adverb space pre-image of m;. To compute all the states of all
exemplars at time ¢, use

M(t) = A(t)P". ®)

M(t) is the Ny x N, matrix of exemplar states at time ¢. The
ith column of M (t) is m;(¢), the vector of N state values of
exemplar i at time ¢. The jthrow of M (t) isn7 (t), the transpose
of the vector that contains the jth state of all N, exemplars at
time ¢. P" is the (N, + 1) x N, constant matrix whose ith
column is p?, the homogeneous representation of the ith adverb
vector. A(t) is the N, x (N, +1) matrix, whose jthrow isa] (t),
the transpose of the vector of coefficients, which are unknown.
There is one a;(t) for each state variable at each time step in a
motion trajectory.
If ®(t)[-] were linear, then

M(t) = ®(t) [P] = A(t)P". )

Probably @ is not linear, so (9) does not hold. Instead the A(%)
is found that minimizes the mean-squared error

|M(t) — M(t)]|?, where M(t) = A(t)P".  (10)
The LMS solution is
A(t) = M(5)(P")T [Ph(PT] (11)
Then
M(t) = A(t)P" = M(t)(P")T [PP(PMT] ' Ph. (12)

Matrix A(t) maps p!, which contains the adverb associated
with exemplar 4, into m;(¢), which is the orthogonal projection
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of m;(t) onto the range of the LMS approximation of ®. For
any adverb, p € A, the approximate motion-state vector at time
t, is therefore

(13)

2) Interpolation: Trajectory m, as computed with (13) over
all ¢, is a linear subspace approximation of the true trajectory m.
Usually, N, 4 1, the dimension of the subspace, is considerably
smaller than Ng + 1, which means that the approximation is,
likely, not very accurate. In fact, it is usually the case that

m;(t) # my(t) = A()p} (14)

for: = 1,..., Ne, and for all ¢; the mapping is incorrect even
from the exemplar adverbs to the exemplar trajectories. Let
m;(t) represent the ith residual

fort =1,..., N.

RBFs can be used to define at each timestep a function f(¢)[-]
that augments the LMS transform A(t), so that the resultant
transform holds for all the exemplars. That is

m;(1) = A(1)p + f(1)[pi] (16)

fori = 1,..., N.. RBFs so defined act as interpolation func-
tions, so that an arbitrary adverb p (not necessarily one of the
exemplars) maps to a combination m of the exemplar motions
through the expression

m(t) = A(t)p" + f(t)[p].
f(®)[] is determined as follows. (13), (15), and (16) imply
f®)[pi] = my(t).

f(t)[] maps adverb p; to the residuals of the states of the ith
exemplar trajectory. If we consider all the exemplars at once,
this becomes

a7)

(18)

FOP] = M(t) (19)
To determine f(t)[-], we consider the rows of M (t)
n(t)
M(t) = : (20)
ny, (t)

Vector 1n;(¢), the transpose of the jth row, contains the residuals
for state j of all N, exemplars at time ¢. Note that n;(t) € £.

Let r; be an exponential RBF defined at the +th adverb loca-
tion, p;. Its intensity at any point p € A is

ri(p) = e Biri(p) (1)

where

pi(p) = llp — pill (22)
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the distance from p to p;. Parameter 3; determines the falloff
in intensity of the sth RBF as the distance from it increases. For
the reach-and-grasp experiments, these were computed as

2In10
min { lp; - pl*}
J#i

so that at p;, the exemplar adverb closest to p;, the intensity
was 7;(p;) = 0.01.

Define R as the N, x N, matrix of RBF intensities at the
locations of the N, adverb vectors

Bi(p) =

(23)

R= ['rik] s where Tik = ri(pk) (24)

fori,k € {1,2,..., N.}. The ith row of R contains the values
of the ith RBF measured at each adverb location. The kth
column contains the values of all the RBFs measured at the
location of adverb k.

Vector ii(t) can be represented in terms of R by

n;(t) = R"q;(t)

]T

(25)

where q;(t) = [gj1(t) gj.n.(t)]" weights the values of
the RBFs at each adverb location, so that the residual of state j
is matched. For all IV, states, this can be written as
MT(t) = RTQ(t) (26)
where Q(t) is an N, x N, matrix. Since M (t) and R are known,
Q(t) can be found by inverting R
QT(t)=M(t)R™ 1. (27)
(Note that R is not a function of time, since it depends on the
adverbs which are constant.) If R is not invertible, an appro-
priate pseudoinverse can be employed. With this, the exemplar
adverbs will map to their corresponding trajectories through

M(t) = A(t)P + QT (t)R (28)
or for exemplar i
m; (t) = A()p} + Q" (t)r(p:) (29)
where
r(pi) = [r1(p:) . (pi) ] (30)

is the contribution at each adverb of the ith RBF. @ is found
not for the purpose of recreating the exemplars, but for interpo-
lating between them. If an arbitrary adverb p is used in (29),
QT (t)r(p) interpolates M(t) to produce a “difference” esti-
mate, m(¢) for what would (presumably) be the associated true
motion-state vector, m(¢).

Therefore, f(¢)[-] = QT (t)r(-), and given a grasp location p,
an estimated motion trajectory is computed by

m(t) = A(t)p" + Q" (t)r(p)

for each time step ¢. Fig. 6 shows 11 trajectories generated by
the VaV algorithm. Two of them place the POR at exemplar po-
sitions, at opposite corners of the box delineated by the teleoper-
ated trials. Seven of the trajectories lie within the exemplar box

€1y
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Fig. 6. Eleven trajectories generated by the VaV algorithm. The inset is a detail that shows (a) the approach, (b) grasp, (c) hold, (d) release, and (e) retract episodes

of one of the 11 synthesized trajectories.

and, therefore, result from the interpolation of all nine exem-
plars. Two of the trajectories lie outside the box. These demon-
strate that extrapolation beyond the exemplar area can result in
good trajectories.

E. Other Methods

In addition to the method described above, two other methods
were used to perform the reach-and-grasp autonomously. The
first method, called AutoGrasp and described in [8], used only
one exemplar trajectory derived from six repetitions of a similar
reach-and-grasp operation, but to only one central workspace
location. Given another grasp location, this original trajectory
was adjusted toward the grasp location at each time step. In
simulation, this method achieved a high placement accuracy,
but for locations far from the original, the hand approached the
wrench from the wrong direction for a grasp to be successful.
When implemented on Robonaut, the AutoGrasp method inter-
acted poorly with the vision system. While it was possible to
run one or two trials without a problem, the continual update of
the wrench location would gradually introduce an error into the
trajectory adjustment.

The second method, LinearGrasp, linearly interpolated the
learned trajectories directly. First, the distance in each Cartesian
dimension from each of the nine example locations to the cur-
rent wrench location was calculated. A Gaussian curve centered
at each example provided weights for each dimension based
on these distances. The weights were normalized, and each
example motion was multiplied by its corresponding weight.
When these weighted motions were superpositioned, the result
was a motion that would, ideally, perform the reach-and-grasp
at the new location. Both in simulation and on Robonaut,
however, the method was found to be imprecise. Sometimes it

would grasp at the correct location; other times it would miss.
A full description and analysis of both these programs and their
results is available in [25].

IV. EXPERIMENTAL METHODS AND PROCEDURES

The VaV procedure was tested in simulation and on
Robonaut. Simulation tests were run on a randomized list
of 269 reachable targets in a 3-D grid that covered the entire
workspace and extended somewhat beyond the edges defined
by the original box. The test on Robonaut was performed by
affixing a wrench to a jig, and placing it arbitrarily at reachable
points in the workspace. Some attempt was made to cover the
entire workspace, but since the goal was to prove that Robonaut
could reach randomly generated targets, a systematic selection
was not used. Robonaut’s vision system was employed to locate
the wrench in the workspace. The following infinite-impulse
response (IIR) low-pass filter was applied to the wrench pose
w(t) (location and rotation) to smooth perturbations due to
noise

WLPF(t) = 0.1W(t) + 0.9wrpF (t - 1). (32)

The major difficulty encountered in performing these experi-
ments was Robonaut’s eye—hand coordination. The actual loca-
tion of the hand can vary, as the encoders that measure the joint
angles are turned on and off. At the time of the tests, the solu-
tion to the problem was a manual calibration with three steps.
First, the arm was reset (by eye) to its zero position, and the en-
coders were reset so that they would report zero at that location.
Second, the reported POR on Robonaut’s hand was changed
from the standard location for teleoperation, which is on the
back of the hand. That location on the robot corresponds to the
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Fig. 7. Plot of the 23 test locations. The wrench was placed at each of the locations marked with a disk. Projections onto each coordinate plane of the locations
of the wrench during the teleoperated trials are indicated by X and ¢ marks. The three disks, each marked with a white X, indicate locations at which the grasp

failed. At the 20 other locations, the robot grasped the wrench successfully.

location of the position sensor on the teleoperator’s data glove.
The POR was changed to the standard location for autonomous
operation, which is in the middle of the palm. Third, a wrench
was placed in the workspace and was reached for manually by
moving the individual joints to the correct location, then the ref-
erence location for the hand was changed again by a few cen-
timeters. This was made as a final adjustment between the loca-
tion reported by vision and that reported by the arm kinematics.
After this adjustment, when the hand was grasping the wrench,
the location of the hand as reported by Robonaut matched the
location of the wrench as reported by the vision system.

During the experiment, the wrench was put in 23 different
locations (see Fig. 7). The run-time part of the VaV program,
which implements (31), was run for each of the locations. The
only input that the program had were the results of the offline
analysis and the location of the wrench reported by the visual
system, which was updated in real time.

V. RESULTS

The simulator was of limited value in testing the procedure,
since it had no direct method for judging the outcome of a grasp
attempt. Nevertheless, the simulator was used, since it enabled
a more complete analysis of the workspace than with Robonaut,
due to time-sharing constraints. To ameliorate the deficiencies
of simulation, numeric criteria were created from the trials run
physically on Robonaut (both the original teleoperator exam-
ples and the experimental results). The trials were sorted based
on physical evidence of a good or bad grasp, and then analyzed
within the two categories. Three criteria for a good grasp in the
simulated data were created. The first criterion was the most
obvious. If the grasp occurred too far away from the wrench
to have enveloped it, the grasp could not have been successful.

Any grasp that was more than 2.6 cm from the wrench loca-
tion was labeled as bad. The second and third criteria concern
the approach angles. If the arm motion caused the hand to ap-
proach the wrench at the wrong angle, the hand could not grasp
it because the fingers, or even the hand itself, would have had to
physically pass through the wrench. To judge approach angles, a
vector was created by finding the direction of motion produced
in the final stages of the Reach behavior. When converted to
spherical coordinates, this direction provided two approach an-
gles: 8, measured in the  —y plane; and ¢, the angle with respect
to the z axis. These angles provided a way to judge if the trial in
simulation correctly approached the wrench. The data recorded
from Robonaut determined that, for a successful approach, the
angles had to be between —1.7° and —25.8° in ¢, and between
134.7° and 76.8° in 6.

Finally, some of the physical grasps that were incorrect were
not the fault of the superposition method, but of the calibra-
tion of the vision system (which was beyond the authors’ con-
trol). Also, occasional inaccuracies in depth perception within
various regions of the workspace resulted in errors in reported
wrench location. When that happened, the hand grasped in front
of or behind the wrench. Nevertheless, it did grasp at the loca-
tion indicated. Since these errors were not in the superposition
method itself, the corresponding grasps were defined as “mar-
ginal,” and were classified as good grasps for the purpose of
creating the simulator criteria and calculating results. This issue
will be addressed further in future work. In particular, it should
be straightforward for the robot to learn that it has been unsuc-
cessful so that it can retry the task. Fig. 8 shows the index-finger
joint trajectory and the force response characteristic of a suc-
cessful and an unsuccessful grasp. Although the joint trajecto-
ries are similar in both cases, there is a clearly discernable differ-
ence in the force signatures. If such a difference is consistent
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TABLE III
RESULTS FROM SIMULATION

Method Good Angle | Good Dist. | Good Overall | % Good

AutoGrasp 192 269 192 71.38

LincarGrasp 267 39 39 14.50

VerbsAdverbs 267 269 267 99.26
TABLE IV

RESULTS FROM EXPERIMENTS ON ROBONAUT

Method Good Grasps | Marginal Grasps % Good or Marginal
AutoGrasp 3 7 43.48
LincarGrasp 8 10 78.26

VerbsAdverbs 10 10 86.96

(we found it to be so in the 20 successful and 3 unsuccessful
experiments), it can be detected and so used.

Tables III and IV report the results of the three methods in
simulation and on Robonaut. The VaV method outperformed the
other two programs. It had better than 99% accuracy in the sim-
ulator trials, which were designed to cover the entire workspace.
While not performing perfectly in the physical trials, it outper-
formed the other methods used.

VI. CONCLUSION AND FUTURE WORK

The work reported in this paper has supported the hypothesis
that a task can be learned by an articulated, dexterous robot
through teleoperation, and that the task can be performed later
autonomously with reasonable robustness. It was demonstrated
that 45 repetitions of a reach-and-grasp task, 5 at each of
9 locations, was sufficient for autonomous performance at
random locations throughout the workspace with a success rate

Plot of the index-finger joint trajectories (their sum) superimposed on the finger force response (also summed) for a successful grasp (bottom) and an

of 87%. After teleoperation, sensory-motor data was segmented
into episodes, and averaged to find nine exemplar state-space
trajectories. In the framework of the larger project that uses
the results (cf. Section I), the exemplars are nine instances of
a sequence of five basic behaviors that were guided by nine
different sensory cues. The trajectories were interpolated suc-
cessfully using the VaV algorithm. This, in turn, supports the
larger project’s hypothesis that tasks learned as sequences of
behaviors in the form of exemplars of clusters of sensory-motor
state-space trajectories can be superpositioned to enable the
robot to perform the task under more widely varying conditions
than those during which the task was learned. That is, the run-
time superpositioning of previously learned behaviors enables
robust task performance.

The VaV approach interpolates both reaching and grasping.
However, the grasping in our experiments was restricted to
a simple distal closure around a vertically oriented object (a
wrench). The position of the hand relative to the arm changed
at each of the exemplar object locations. The grasp varies
slightly over the locations. Therefore, the grasp (as defined by
the finger position trajectories) was interpolated, as well. To
further understand the capabilities and limitations of VaV, we
intend to test the interpolation of grasping in the near future.
Our first test will be to learn the trajectories for various distal
grasps (e.g., from above and from below) of a quasi-cylindrical
object in vertical and horizontal orientations. Then we will test
the distal grasping of a similar object in arbitrary orientation
within the same plane as the examples.

Our work in this paper used the vision system to obtain
the target location, it used proprioceptive data, i.e., sensory
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data from the joint sensors in its trajectory calculations, and
it used haptic, force, and torque data to detect events during
autonomous operation. The vision system was not used for
visual servoing. That is, it was not used in closed loop with the
arm and hand controllers to determine and change the pose of
the hand relative to the target. A hybrid approach that includes
vision in closed loop may prove to be more capable than VaV
alone. Platt has shown recently that Grupen’s closed-loop
controller approach works very well for certain complicated
manipulation tasks [26]. Therefore, we are currently re-
searching the combination of our trajectory extraction with
Grupen’s grasp controllers. In effect, VaV is used to control
unconstrained motion, sequencing, and pre-grasp pose control,
while Grupen’s controllers handle dextrous manipulation. In
one current experiment, the VaV algorithm is being used to
extract a description of a multistep task performed by Robonaut
through teleoperation. The task includes various reaching,
grasping, and manipulation steps. The VaV trajectories are used
to guide Robonaut’s hand toward intermediate goal positions
with a pose evolution that mimics that of the teleoperator and
sets up the hand for a grasp. When the hand comes within range
of the target, an appropriate closed-loop controller, predesigned
for the manipulation task, is selected from among a set of such
controllers. The controller guides the manipulation task, and
then releases control back to the VaV trajectory generator for
the next unconstrained motion.

A set of closed-loop controllers can be used as sensors during
teleoperated and VaV-controlled tasks. Fagg has demonstrated
recently that a set of such controllers operating independently
and in parallel can reliably predict the intent (within a task con-
text) of an unconstrained motion [27]. As observers, the con-
trollers indicate which behavior (from among a set of possibili-
ties) is the most likely to be required next in the task. Thus, the
controllers themselves guide their selection during the uncon-
strained phases. This information, along with the VaV trajecto-
ries, becomes a recipe for autonomous task execution in the face
of environmental contingencies.

The VaV algorithm may also enable the automatic design of
such controllers. In Grupen’s approach, closed-loop controllers
follow trajectories in a state space that lead to attractors. Our ap-
proach extracts and recombines trajectories in a sensory-motor
state space. Therefore, it appears possible that our approach
could be used to discern regions of attraction in the state space,
which could then be used to define closed-loop controllers
automatically.

The next step in the project is to extend the types of behaviors
used and demonstrate that behaviors learned at different times
for different tasks can be composed at runtime to solve new
problems. This method bears some similarity to classical gain
scheduling; however, the dynamics of the underlying Robonaut
controllers did not dominate the behaviors we have explored so
far. We plan to extend the range of behaviors to include highly
dynamic ones, and determine how well this procedure extends.
Given a robust set of learned behaviors, we believe that their
composition will allow Robonaut to become robust at problem
solving.
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