
Interface Design for a Modern Software Ticketing System 
 

Minhui Xie, Mark Tomlinson, Bobby Bodenheimer 
Department of Computer Science 

Vanderbilt University 
Nashville, TN 37235 

{minhui.xie, mark.tomlinson}@vanderbilt.edu, bobbyb@vuse.vanderbilt.edu
 
 
 
ABSTRACT 
This paper describes issues in the design of IT-centric 
trouble-ticketing applications. Two prototypes are 
presented. The first introduces a user-centric, web-
accessible thick client interface that seamlessly integrates 
features most commercial companies offer only as bolt-on, 
value-added additions.  The second prototype is an HTML-
designed, calendar-centric ticketing application that 
provides unique affordances to helpdesk 
technicians.  Expert evaluations show both models are 
superior to current systems.  Implementation issues are 
discussed. 
Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation] User Interfaces 
Keywords 
Trouble-ticketing, XUL, user interface design 
 

1. INTRODUCTION 
 Trouble-ticketing systems are used in a number of 
service-oriented industries to quickly and efficiently keep 
track of jobs and job-related details.  Within the IT 
industry, ticketing systems, or helpdesk applications, form 
the core of most technical support groups.  For example, a 
simplified usage scenario is:   

Dr. Johnson of Fictitious University arrives at the 
office one morning only to find his computer unable to start 
up; it just sits there making an intermittent pinging sound.  
Dr. Johnson calls Adam, a Fictitious IT helpdesk agent.  
Adam creates a new trouble ticket for Dr. Johnson, records 
his name and location, and then listens to a description of 
his computer problems.  Adam runs through a basic 

troubleshooting checklist; when the problem is not 
resolved, she transfers the details to the open ticket.  The 
ticket is assigned to Julie, a support technician.  Julie logs 
into the ticketing system later in the morning, pulls up Dr. 
Johnson’s ticket, goes to his office, determines that the hard 
drive is faulty, replaces it, closes Dr. Johnson’s ticket, and 
proceeds to her next ticket. 
 Unfortunately, there are a number of design problems 
common to many of the helpdesk packages available today.  
Most commercial products focus primarily on backend 
technologies, such as lightweight directory access protocol 
(LDAP [7]), and value-added solutions, such as asset and 
change management, instead of user-interface design and 
evolution.  Many of these value-added products are clearly 
bolt-on additions.  In a few cases they are from other 
companies entirely.  Almost none integrate cleanly with 
existing base products.   
 Given increasing corporate pressure to transition from 
traditional operating system-dependent applications to web-
based counterparts, many vendors simply duplicate their 
existing interfaces in HTML.  Unfortunately, it is not yet 
possible to do a wholesale dump of complex legacy 
interfaces to web technologies without a significant 
redesign to compensate for the different affordances that 
web technologies bring. 
 This paper attempts to correct these shortcomings. We 
conducted ethnographic observations of technicians 
engaged in IT helpdesk support using standard products. 
Based on these observations, we formulated four 
shortcomings of existing interfaces. We then surveyed 
several helpdesk packages to see how these flaws were 
addressed. Finding that they were not addressed 
adequately, we introduce two new ticketing system 
prototypes.  One is a XUL-based [3] application designed 
around users’ work and thought flows.  It has a thin client-
accessible thick client interface with seamless contacts, 
asset management, and knowledge-base integration.  The 
other prototype is a concept model of a pure HTML 
interface offering a number of calendar-centric affordances 
that enhance the ability of technicians to locating their most 
important tickets.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 

ACMSE ’04, April 3-4, 2004, Huntsville, AL, USA. 
Copyright 2004 ACM 1-58113-870-9/04/04…$5.00.  

 



2. RELATED WORK 
 The basics of good user interface design can be found 
in many textbooks, e.g. [9].  Unfortunately, many of those 
techniques have not found their way into existing ticketing 
applications. A large listing of helpdesk packages can be 
found in [8]. We evaluated five different commercial and 
open-source helpdesk packages. Each system demonstrated 
multiple design problems.  For example, Best Practical’s 
RT [1] is a leading open source ticketing package with an 
integrated knowledge base.  Searching for a knowledge 
base article while entering a ticket requires manually 
opening up a second browser window/tab and (possibly) 
logging into the system again.  In addition, the default 
ticket view is not customizable and shows only the ten 
highest priority tickets.  There is no intuitive address book/ 
contacts integration.  With various minor exceptions, most 
other vendors follow similar approaches.  Even though 
most commercial packages have various levels of 
customizability built in, none of the packages we examined 
allowed modifications that address the issues in this paper 
without significant rewriting in Perl and/or HTML.  As far 
as we are aware, there are no other published papers that 
cover these specific topics in this context. 

 

3. SYSTEM DESIGN 
3.1 Observations 
     We observed technicians engaged in IT helpdesk 
support at Vanderbilt’s ITS computing center.  Based on 
our observations and interviews with these technicians and 
other personnel with significant experience in the IT 
support field, we obtained the following characteristics of 
the average support technician:  (1) Technicians constantly 
sort and filter their tickets to locate those which match 
specific criteria, usually highest priority and closest 
deadline.  Secondary criteria often include basic problem 
type, location, and user availability.  Within those criteria, 
tickets are usually handled first come, first served. (2) Most 
tickets are handled within a timely matter, usually within a 
week after they are created.  Thus, most technicians are 
primarily concerned with tickets created recently.  (3) 
Actual work time spent on tickets varies widely, and most 
technicians are assigned up to 10-15 tickets per day.  These 
observations are specific to Vanderbilt ITS, but, based on 
conversations with technicians at other locations, we feel 
these characteristics hold for the “average” technician.  The 
characteristics can vary widely due to the size of the 
installation, number of total technicians, and average 
number of users/computers supported per technician. 
     Based on these observations and a survey of existing 
trouble-ticketing systems, we present four areas for 
improvement in existing helpdesk packages. 
3.2 User Optimized 
 Most IT ticketing system users focus on a basic set of 
tasks−entering new tickets, identifying the next ticket to 
work on, and updating/closing those tickets.  All of these 

involve factors such as juggling ticket priorities, due dates, 
etc.  After observing a number of technicians at work, we 
streamlined the interface to enhance the features most used 
and hide those that are not common. 
3.3 Integrated Value-Added Services 
 Some helpdesk packages are highly modularized, 
enabling vendors to charge separately for each particular 
piece.  Other vendors charge extra for “advanced” 
technologies–asset management, change and configuration 
management, and the like.  In almost every case, these 
“bolt-on” packages do not integrate well with the base 
application and fail to take full advantage of any associated 
affordances.   
 In particular, asset management and knowledge-base 
systems are critical components of the IT support 
infrastructure and should be seamlessly and transparently 
integrated. 
3.4 Information Mapping 
 Information mapping [2] is a scientific methodology 
used to divide and label information for easy 
comprehension, use, and recall. In the context of this paper, 
it is a way of thinking and communicating whereby 
technicians approach content with a set of systematic 
principles and techniques to ensure that the content can be 
readily used. 
3.5 Interface Separation 

The previous generation of ticketing systems used 
system-dependent, windowing-based interfaces.  As the 
Internet evolved, most helpdesk vendors migrated their 
systems to HTML.  Unfortunately, many of these products 
were not redesigned to take full advantage of new and 
different affordances provided by the Internet and its 
associated technologies. 

Some ticketing systems apply this one-interface-fits-
all mentality to the customer as well, presenting a single-
unified interface used by technicians, agents, and 
customers.  A few interfaces are stretched almost to the 
breaking point to make them functional on both screen-, 
resolution-, color-, and input-challenged hand-held devices 
and standard PCs.    

In contrast, the prototypes outlined in this paper are 
single-purpose models designed expressly for IT 
technicians and agents and the tasks most common to them.  
These prototypes take full advantage of the underlying 
programming medium to deliver a fast, responsive, and 
efficient interface.  In addition, we take the idea of interface 
separation further to include “supervisor” functions such as 
charting and reporting.  While nice, these features are for 
the most part useless to agents and technicians and are not 
included in our designs. 
4. PROTOTYPE DESIGNS 
4.1 Helpxulla 
 Our first prototype, Helpxulla, takes full advantage of 
extensible user interface language (XUL) to create a thin 

 



client ticketing system with the power of a thick client 
interface.  XUL [3], originally developed by Netscape 
Communications Corporation for use with their next 
generation web browser (now Mozilla), is a cross-platform 
XML-based user interface language with a complete set of 
graphical widgets and data access capabilities.  By using 
XUL as the base for this prototype, we get the full power 
and graphical toolkit of traditional-style applications, the 
web-accessibility that is so desirable in modern 
applications, and the affordances of Internet technologies 
all combined into one package.   
 Given the multitasking nature of today’s computer 
systems, one of the more archaic limitations of every web-
based ticketing package (we are aware of) is its single-
tasking nature.  None of the systems we surveyed supports 
multiple, concurrently displayed tickets, despite the number 
of uses for such a feature.  To support concurrent ticket 
display and multi-task accessibility, Helpxulla has a tabbed 
interface.  Everything – new tickets, open tickets, searches, 
search results, and knowledge base articles – can be opened 
simultaneously in multiple tabs (see Figures 1, 2).  
Additionally, the content of the default “home” page is 
completely specifiable.  Phone agents can set the default 
screen to show a new ticket.  Support technicians can 
choose to see the current results of any search.  The choice 
is up to the user.   
 The layout of the “new ticket” portion of Helpxulla is 
completely engineered around how agents and technicians 
enter tickets.  Contact information is accessible in-line via 
an auto-complete drop-down box.  Rather than typing the 
customer’s name and clicking a lookup button only to find 
out that the name was misspelled, as the agent types in the 
customer’s name, the backend data source is automatically 
queried; matching names followed by some type of 
identifying information (e.g., department name) are 
displayed.  The agent need only select the correct name to 
populate basic location/contact fields.  The entire operation 
takes only a few seconds and can be done seamlessly while 
the customer is beginning to describe his problem.  
Heuristic spelling algorithms could, of course, be included 
if desirable.     

Along with the customer’s contact information, a 
short summary of the customer’s computer configuration 
also appears in a collapsible, right-oriented sidebar.  Full 
system details are available as an additional ticket-specific 
tab, if necessary. 

As the user’s contact and system information is 
populating, the agent simply continues down the page 
entering the information that the customer is describing– 
error message, details, and a short summary of the problem.  
As the agent types, a knowledge-base system scans for key 
words in the background.  As soon as possible knowledge 
base entries have been located, they are shown via an 
unobtrusive panel at the bottom of the user’s screen.  Once 
the agent sees a likely knowledge base article, they can 
open it in another tab.  Like the autocomplete field for the 
customer’s name, there is no need for an agent to explicitly 

issue a knowledge base query. 
 Once a ticket is in the system, it is the system’s job to 
ensure that technicians can easily find it.  Therefore, the 
default view for support technicians is the result of a user-
defined search.  A convenient panel, located in the right 
sidebar (see Figures 1, 2), lists the number of various types 
of tickets assigned to the technician.  Clicking categories 
immediately initiates a new search for the relevant tickets 
and pulls up the results in a separate tab.  In addition, the 
most common search fields form the basis for a complete 
search screen with integrated filtering. 

Once a ticket is opened in a tab, less immediately 
important information, like contact information and system 
summary, are displayed in a hideable, resizable right-
oriented content panel.  The majority of screen space is 
taken up by the most important data – the user’s error 
message and problem details.  Additionally, the latest, most 
relevant comment is displayed along with the ticket; older 
comments are available via a separate tab within the main 
ticket. 
 Several other features are also useful. Commonly used 
functions are available in a command bar down the left-
hand side of the screen instead of as (potentially nested) 
menu options.  Each of the auxiliary features, such as the 
command bar and the various content panels, are 
collapsible to maximize ticket data on lower-resolution 
displays.  Finally, there is a “clone ticket” function that 
quickly duplicates the current ticket.  
4.2 Helplendar 

Our second prototype, Helplendar  (Help Calendar), 
is a departure from traditional ticketing system interfaces.  
Helplendar particularly emphasizes the navigation of 
tickets. It addresses a fundamental issue pointed out by 
most technicians we spoke with: how to effectively locate, 
manage, and solve multiple calls in different locations, each 
with unique deadlines. Helplendar quickly provides 
technicians with answers to basic questions such as, “What 
is the overall situation today” and “How many important 
tickets are left and what is the status of each of them?”  

This calendar-centric interface was inspired by the 
Treemap [4] visualization technique, which provides a 
compact and elegant means of displaying attributes of a 
large number of objects [5].  The display screen is divided 
into two portions: a calendar portion on the left and a ticket 
portion on the right (see Figure 3, 4).  The calendar portion 
displays an entire month at the top (View By Month) and 
an entire week in the remaining space (View By Week). 
Technicians can retrieve the tickets in one whole week or 
up to 100 tickets by clicking a specific day of the month on 
the calendar.  Each ticket assigned to a specific technician 
will be represented by a visual marker and shown on the 
week/day of calendar. Closed or resolved tickets are not be 
shown by default.  The tickets being viewed can be 
arranged in various ways customizable by the technician, 
e.g. by priority, deadline, chronological order, and service 
area. The ticket’s status and its priority are color-coded so 

 



that a technician can easily see how many new or urgent 
tickets he has pending. Hovering over a color-coded button 
will trigger a small overlay showing more detail on the 
ticket in question. Some of the ticket’s related information, 
such as service area (building name) and time of creation, 
is customizable and can be directly displayed on a button.  
Technicians can then easily schedule their tasks or arrange 
their campus trips. Moreover, the balloon feature allows the 
calendar portion to be hidden temporarily if more space for 
the ticket’s data is desired. 
  The ticket area (Figure 3, 4) is used to process the 
tickets and implement more of the functionality covered by 
Helpxulla.  Technicians can switch between the tickets by 
clicking on the ticket’s visual markers on the calendar 
portion. This feature provides similar functionality to 
Helpxulla’s tabbed interfaces.  In Helplendar, the content 
information of a target ticket can be quickly singled out 
from a large number of individual tickets. 

We assume that a technician might want to 
simultaneously display characteristics (priority, due date, 
problem category, etc.) of 100 opened tickets on a 19-inch 
display with a resolution of 1024 x 1280 pixels 
(approximate 1.3 million).  With 10% of screen space 
already utilized, there are more than 1,000 pixels allotted 
per ticket.  A visual marker with 1,000 pixels (40x25 color-
coded button) is sufficient for providing the visualization 
cues related to the ticket content information and is easily 
selectable using a standard mouse or TAB key. 

 Helplendar is a pure-HTML interface. This concept 
model is browser-based and can be easily accessed from a 
computer (Windows/Unix PC, Macintosh, Sun workstation, 
etc.) that has a web browser, such as Internet Explorer (5.x, 
6.x), Netscape (6.x, 7.x), Mozilla, and Opera (7.x).  
Meanwhile, Helplendar is completely adaptable in regard 
to our first prototype, Helpxulla, which emphasizes ticket 
processing. 
 

5. EVALUATION 
To evaluate our prototypes, we contacted eight expert 

users in this field.  All of them had at least two years 
experience working with various trouble-ticketing systems, 
and half had between ten and twenty years experience.  Our 
evaluation protocol consisted of an introductory tutorial 
session after which the expert user completed several usage 
scenarios.  Each expert used both prototypes.  Half of them 
used Helplendar first and the other half used Helpxulla 
first.  Each expert was then asked to list the helpdesk 
application with which they were most familiar and fill out 
a questionnaire comparing both prototypes to that system.  
The questionnaire was based on a five-point Likert scale. 
An answer of three signified that a prototype was 
equivalent to the user’s standard ticketing system in a 
particular area, and five signified that the prototype was 
much better.  Because the commercial systems were 
installed and working, it was not possible to conduct a 
between-interfaces comparison. Thus, for each response we 

calculated the mean and standard deviation. 
5.1 Helpxulla 

The results were encouraging for the Helpxulla 
prototype (Table 1).  Our survey contained twenty-one 
questions for this prototype. Only the most important are 
reported here, but we note that no answer for any question 
implied that the expert was more satisfied with his or her 
existing ticketing package.  When asked how useful the 
tabbed interface was (question 1), the response was very 
positive with a mean of 4.75, 0.46 standard deviation.  
When asked how useful the dynamic knowledge base 
(question 2) and right content panels (question 3) were, the 
means were 4.13 and 4.5, respectively, with standard 
deviations of 0.64 and 0.76.  When asked about the layout 
and functionality of the various screens (questions 4 and 5), 
the mean responses were 4.30 and 4.25 with standard 
deviations of 0.46 and 0.89, respectively.  The mean 
response to the layout of the search results screen was 4.25.  
The name auto-complete box (question 6) was also well 
liked with a mean of 4.63, standard deviation of 0.52.   

In general, most of the experts were satisfied with the 
usability, power, and flexibility of this interface, as means 
for these questions were approximately 4.15 and standard 
deviations approximately 0.65.  Of some concern was the 
response to a question asking the experts to rate the power 
of this interface (question 8). The mean response was 3.50 
with a standard deviation of 0.93.  It may be that some of 
the experts had a few of the more advanced features which 
we have not yet considered, such as ticket linking and 
service-level agreement support, in mind. 
5.2 Helplendar 

The results were similarly positive for the Helplendar 
prototype (Table 1).  None of the expert reviewers had 
seen a similar design before (question 1).  Out of the twelve 
questions asked, all were favorable; only the most 
important are reported here. When asked about the 
helpfulness of the color-coded button (visual marker) or 
pop-up overlay in providing ticket-related information 
(questions 2 and 3), the response was very positive with 
means of 4.88 and 4.57 and standard deviations of 0.35 and 
0.79, respectively.  When asked how easy the interface was 
to use (question 4), the mean response was 4.63, with a 
standard deviation of 0.74. When asked about the 
interface’s potential to change the agent’s view of their data 
(question 5), the response was surprisingly encouraging 
with a mean of 4.0 and a standard deviation of 0.82. This 
result also suggests that a possibly steeper learning curve 
requiring users to spend some time getting used to this 
interface. 

Some experts we showed this design to believed it 
would save the technician a considerable amount of time 
when finding and navigating between tickets. One user 
went so far as to claim that it had the potential to 
fundamentally change the agent’s view of ticketing data. 
 

 



6. CONCLUSION 
This paper presented improved prototypes for IT 

trouble-ticketing applications. We ethnographically 
observed technicians actively engaged in helpdesk issues 
and solving problems, and determined primary issues that a 
helpdesk application should address. We then analyzed a 
number of existing trouble-ticket/helpdesk packages to 
evaluate how well they met the needs of these users.  Their 
interfaces were found to have usability problems and be 
poor HTML-duplicates of prior legacy versions.  These 
interfaces also had poor integration of critical ticketing 
features such as knowledge bases and asset management.  
To resolve these problems, we introduced two new 
ticketing models.  The first was a XUL-based thin client 
with the power and flexibility of a thick client interface.  
The second was a concept model of a calendar-centric 
design that allowed quickly locating the most important 
tickets. Expert reviews showed that both prototypes were 
more useful and flexible than existing helpdesk 
implementations. 

Based on comments from the expert reviewers, there 
are a number of possible extensions we wish to pursue in 
the future. One reviewer pointed out that asset data had 
more affordances than we implemented. He was 
particularly interested in the ability to separate asset data 
from ticket data and search it.  A number of reviewers also 
pointed out some more advanced features, such as ticket 
linking, which were not implemented.  Finally, there has 
been much research done on the use of sliders in database 
searches [6].  We would like to see if it is possible to 
reduce the search screen and dynamically manipulate the 
search results. 
 

7. ACKNOWLEDGMENTS 
We are grateful to the technicians who allowed us to 

observe them and to the expert users who reviewed these 
prototypes and provided very valuable feedback. We thank 
the anonymous reviewers for their helpful comments. 
 

8.  REFERENCES 
[1] RT: Request Tracker. http://www.bestpractical.com/rt/ 
[2] Horn, R.E. Mapping Hypertext: The Analysis, Organization, 

and Display of Knowledge for the Next Generation of On-
Line Text and Graphics. Lexington, MA: The Lexington 
Institute, 1989. 

[3] XUL 1.0. http://www.mozilla.org/projects/xul/ 
[4] B. Johnson and B. Shneiderman. Treemaps: a space-filling 

approach to the visualization of hierarchical information 
structures. In Proc. of the 2nd International IEEE 
Visualization Conference, pages 284–291, October 1991. 

[5] Wattenberg, M. 1999. Visualizing the Stock Market, CHI99, 
Extended Abstracts. 

[6] KEIM, D. A., AND KRIEGEL, H.-P.  Visdb:  Database 
exploration using multidimensional visualization.  In 

Readings in Information Visualization: Using Vision to 
Think, S. K. Card, J. Mackinlay, and B. Shneiderman, Eds. 
Academic Press, San Diego, 1999, pp. 126-139. 

[7] http://www.openldap.org. 
[8] http://dmoz.org/Computers/Software/Help_Desk/Browser_B

ased/ 
[9] B. Shneiderman, Designing the User Interface, 3rd ed., 

Addison-Wesley, Reading, Mass., 1998. 

 

 

Figure 3: Helplendar − Calendar-Centric Interface 

 
Figure 4: Helplendar − Zoom 

 

 



 
 
 
 
 
 
 
 

Question 

MEAN 

STDEV 

 

Results of Expert Reviews: Helpxulla                                                                     Results of Expert Reviews: Helplendar 

1 2 3 4 5 6 7 8   Question 1 2 3 4 5 

4.75 4.13 4.50 4.30 4.25 4.63 4.15 3.50   MEAN - 4.88 4.57 4.63 4.0 

0.46 0.64 0.76 0.89 0.89 0.52 0.65 0.93   STDEV - 0.35 0.79 0.74 0.82 

Table 1: Results of Expert Reviews
 
Figure 1: Helpxulla − Create a New Ticket 

 
Figure 2: Helpxulla − Search a Ticket 


	3.4 Information Mapping

