
Extending Progressive Meshes for Use over Unreliable
Networks

Zhihua Chen
Dept. of Electrical Engineering

and Computer Science
Vanderbilt University
Nashville, TN 37235

zhihua.chen@vanderbilt.edu

Bobby Bodenheimer
Dept. of Electrical Engineering

and Computer Science
Vanderbilt University
Nashville, TN 37235

bobbyb@vuse.vanderbilt.edu

J. Fritz Barnes
Dept. of Electrical Engineering

and Computer Science
Vanderbilt University
Nashville, TN 37235

J.Fritz.Barnes@vanderbilt.edu

ABSTRACT
Progressive meshes [7] provide an attractive mechanism for trans-
mitting 3D geometry over networks. Progressive meshes (PM)
transmit a coarse initial mesh and refinements that can be applied
to the initial mesh. However, these techniques assume a reliable
network protocol such as TCP/IP is used for data transmission.
When transmitting 3D geometry for graphical applications such
as concurrent virtual environments distributed over wide area net-
works with some nodes potentially using wireless networks, many
losses will occur. TCP/IP performance degrades in the presence of
packet loss and multicast communication mechanisms typically do
not provide reliable communication. These applications motivate
the issue of transmitting geometric data over unreliable networks.
In this paper, we discuss several errors that are caused when re-
constructing PM geometries after some packets have been lost. We
modify the PM data structures to improve robustness during packet
loss. We use these modifications to improve a hybrid transmission
technique that uses TCP to transmit the base mesh and portion of
the initial mesh and then use UDP to transmit the remainder of the
mesh to improve transmission performance.

1. INTRODUCTION
As the Internet expands, demand is growing for high quality

3D geometry in applications, from games such as Everquest [5] to
collaborative virtual environments to multimedia and purely web-
based applications. Such applications use high resolution 3D meshes
to achieve their effect, and the challenge of the growing demand for
these meshes is how to store and transmit the large amount of data
contained in them.

Hoppe [7] proposed the progressive mesh (PM) technique as an
initial solution for the transmission of geometric data over data net-
works. In this method, the server initially sends coarse shape in-
formation to a client that can be reconstructed and rendered very
quickly. Then increasing detail in the model is transmitted to the
client, allowing the client to progressively refine the initial model
into the full resolution model.

Various authors, e.g., [10] and others, have combined mesh com-
pression techniques with progressive transmission to reduce the
amount of data that needs to be sent. Typically, there is a trade-
off between compression ratio and the fragility of the compressed
mesh. In prior work, we demonstrated that using an unreliable
channel can improve transmission times by as much as forty per-
cent with a negligible drop in visual quality [4]. In this work, we in-
vestigate mechanisms that extend the PM technique to handle ran-
dom losses occurring in the transmission channel. We describe the
flaws that occur when packets are lost using the PM technique and

modifications and heuristics that can be used to improve the visual
quality of models when some packets have been lost. These mod-
ifications allow additional improvements in the transmission time
over unreliable networks.

The paper is organized in the following manner. In Section 2
we place our work in context of what has been done in this area.
Section 3 details the modifications to the basic PM scheme needed
when data loss can occur. Section 4 discusses our hybrid transmis-
sion protocol. Section 5 presents the results of actual transmission
experiments over a lossy network with an analysis of them. Finally,
in Section 6 we discuss our results.

2. OUR WORK IN CONTEXT
The PM scheme was devised by Hoppe in [7, 9], and we have

implemented the basic versions without the modifications of later
work, e.g., [8]. The reader is referred to thos papers for a detailed
discussion; here we simply present enough information to famil-
iarize the reader with our notation. The PM representation of a
mesh � is stored as a coarse mesh �� and a sequence of � de-
tail records called vertex splits. These vertex splits indicate how to
incrementally refine �� so that after the � vertex splits have been
processed, the original mesh � is recovered. In fact, the PM rep-
resentation defines a sequence of meshes ������ � � � ��� which
provide increasingly accurate approximations of � .

A vertex split is a basic transformation that adds a vertex to
the mesh. The basic progressive mesh scheme is implemented,
but for the purposes of this paper, a vertex split does not contain
normal, texture, or material information. Each vertex split is a 30
byte quantity consisting of a face index, �����, an index �	 
���


(� � �	 
���
 � �), an encoding ��� ���, and two vertex position
deltas, ���� and ����. In our experiments, these vertex splits are
packed into 1400 byte packets. Thus, each packet contains roughly
46 vertex splits.

Figure 1 illustrates a PM vertex split transformation. Each ver-
tex split operation introduces a new vertex �� and two new faces,
as shown. The location of a vertex split is parameterized by ��, ��,
and �� . By default, the PM data structure does not include inci-
dence information in the vertex to face direction. The vertex values
are determined through the fields �����, �	 
���
, and ��� ���.
To determine the vertex being split (��), the three vertices of the
face ����� are sorted by their index values and stored into an or-
dered list. They are indexed by �	 
���
. Vertex �� is the next
vertex clockwise on the face �����. The vertex �� is determined
by ��� ���, the number of clockwise rotations about �� from �� to
�� .

Other techniques for mesh decomposition with an idea towards



��

��

��

�� ��

�� ��

��� ���
�����

�����

Figure 1: Vertex split transformation.

Figure 2: The Buddha model after transmission over a lossy
network: (a) no change to PM data structures; (b) using ab-
solute �	 
���
; (c) using both absolute �	 
���
 and altered
��� ��� field.

robust transmission exist, e.g. [3, 10, 1]. Most of these techniques
have not been tested in as rigorous an environment as our methods.
In the context of progressive transmission, much of the work has
focused on better methods of transmission, e.g., [10, 2, 6]. These
techniques are complementary to our own, in that they could fit
within the techniques proposed here to achieve higher transmission
rates.

3. MODIFICATIONS TO THE PM DATA
STRUCTURE

When the transmission channel is lossy, vertex splits will be

(a)

(b)

f��

=

=
f��

f��

20

f��

45

96

65

65

f��f��

114

Figure 3: Illustration of self-intersection occurrence caused by
�	 
���
: (a) No packet loss, intermediate vertex splits change
the three vertices of face ��� to 65, 96 and 114; (b) Packets con-
taining the intermediate vertex splits are lost, the three vertices
of face ��� remain unchanged as 65, 20, 45.

��� ���=4

��
�����

�� ��
��

��

��
�����

��
�����

(a)

�����

����

��

��

�����

��

��

�� �����

��� ���=4

(b)

Figure 4: Illustration of self-intersection occurrence caused by
��� ���: (a) No packet loss, intermediate vertex splits change
the number of faces around �� to 8; (b) Packets containing the
intermediate vertex splits are lost, the number of faces around
�� remain unchanged at 6.

lost when packets are lost. As a result, the geometry of the re-
constructed model can be corrupted. This corruption most often
takes the form of surface self-intersection, i.e., parts of the surface
intersecting with the surface itself. The self-intersections destroy
the manifold property that the surfaces in the original model have
and create visual artifacts in the reconstructed models, as shown
in Figure 2 (a). In this section we discuss how lost vertex splits
cause self-intersections to occur and describe modifications to the
PM data structure that improve the situation.

First, in addition to a packet containing only vertex split infor-
mation, each packet contains a 4 byte header that stores the index
number of the first face of the mesh that will be introduced by the
first vertex split in this packet. The client renderer uses this num-
ber as a “poor man’s” error correction, to give faces generated by
vertex splits after lost packets their index number in the full reso-
lution mesh. This process is done so that future splits whose face
index, �����, reference these faces will be able to find them. This
header is a monotonically increasing number, and can also be used
to detect out-of-order packets.

One cause of self-intersection is that the �	 
���
 field in a ver-
tex split record is the �����
�� numerical order of the index value
of the split vertex �� among the three vertices on ����� (see Fig-
ure 1). When vertex splits are lost, the index values of the vertices
on ����� may become different from what they were when the pro-
gressive mesh was generated. Thus, the ordering of the vertices
may be wrong. This change of ordering causes the PM reconstruc-
tion to find the wrong ��, which results in geometric corruption.
For example, in Figure 3 (a), without packet loss, intermediate ver-
tex splits change the three vertices of face ��� to 65, 96 and 114.
A subsequent vertex split with �����=66 and �	 
���
=1 splits
vertex 96 because its index is the second smallest. When the inter-
mediate splits are lost, as shown in Figure 3 (b), the three vertices
of face ��� remain unchanged as 65, 20, 45. Now vertex 45 has the
second smallest index among the vertices of ���. The same split
with �����=66 and �	 
���
=1 then splits vertex 45 and causes
the faces connected with the added vertex to pierce the top right
face.

The PM data does not store how the three vertices of a face to
be reconstructed were ordered in the vertex list of the face in the
original model. Therefore, the ordering of vertices in the vertex
list of a face in the reconstructed model may be different from
that in the original model. This fact is part of the reason why the
�	 
���
 was defined as a �����
�� order of index value rather
than the ��	����� placement of �� in the vertex list of �����. To
alleviate this problem, we add a second pass over the PM data to
replace each �����
�� �	 
���
 with the ��	����� placement of
�� at the time of the vertex split. The time the second pass takes



is negligible compared with the time to generate the progressive
meshes. When this change is incorporated a significant number of
self-intersections can be eliminated, as shown in Figure 2 (b).

The ��� ��� field in a vertex split record can also cause self-
intersections to occur. The ��� ��� field, as originally defined, is
the number of clockwise rotations from �� to �� about ��. When
vertex splits are lost, the number of rotations from �� to �� may
be different from what it was in its original context, or �� may not
exist at all. This difference can cause the reconstruction program
to pick the wrong �� , resulting in geometric corruption as shown
in Figure 4. To help the reconstruction program detect this case
without changing the size of the PM data structure, we modify the
��� ��� field. Instead of using 16 bits for the ��� ��� field, we
use 8 bits, and use the remaining 8 bits to encode a quantity called
����� 	
��. The ����� 	
�� field stores the total number of faces
around ��. The reconstruction program checks the ����� 	
�� at
run time and discards splits whose ����� 	
�� do not match those
in the partially reconstructed meshes. When this change is incor-
porated, additional self-intersections can be eliminated, as shown
in Figure 2 (c).

4. HYBRID TRANSMISSION
The progressive mesh format creates an alternative representa-

tion of the 3D geometry. One significant advantage of this repre-
sentation is that some packets containing mesh data are more im-
portant than other packets. In particular, initial splits provide sig-
nificant improvements as measured by the Hausdorff metric, while
later splits provide decreasing benefits.

Our hybrid technique leverages the inherent differences that ver-
tex splits have on the resulting visual accuracy of the reconstructed
mesh. Thus, in this scheme, we begin by transmitting data using
the TCP protocol. Part-way through the transmission, the hybrid
sender closes the TCP connection and transmits the remaining data
using UDP. Details on these protocols can be found in [4]. This
technique allows the sender to reliably transfer the base mesh and
some of the initial splits and use a more aggressive technique to
transfer less important splits.

TCP controls the rate that packets are sent to maintain flow con-
trol and minimize congestion. As a result, TCP does not provide
the end-user control of the sending rate. When we consider using
UDP for transmission of data, the end-user has significant influence
over the send rate. Therefore, our application must carefully select
the send rate. If the send rate exceeds the capacity of the channel,
we will increase the number of packets lost. However, if we de-
crease the send rate, we will not lose any packets but the transfer
of information will take much longer than a TCP connection might
take. We experimentally determine UDP send rates to use in appli-
cations. In future work, we will investigate automatic mechanisms
for setting the UDP send rate.

An issue of concern in implementing this idea is that the sender
can begin sending UDP data to the receiver while the receiver is
still reading data from the TCP connection. This behavior causes
a problem since the initial data will fill up the operating system’s
buffer for incoming network data and start dropping UDP pack-
ets that arrive. Therefore, the hybrid protocol adds a delay before
sending the UDP data until the receiver has received all TCP data.

5. EXPERIMENTAL RESULTS
We tested our transmission methods by running a set of exper-

iments with varying levels of background load using a variety of
models. The experimental setup is identical to that described in [4];
for reasons of space, the reader is referred there for details. Also for

85 90 95 100 105 110 115 120 125 130 135
0

20

40

60

80

100

120

140

160

180

Average Channel Capacity Used by Noise (expressed as % of total)

T
im

e 
(s

)

Average Time of Transmission vs. Channel Capacity with UDP send rate = 11.424 Mbps

0% TCP
12.5% TCP
25% TCP
50% TCP
100% TCP

Figure 5: The average time of transmission of the Buddha
model versus the channel capacity for the different transmis-
sion schemes (TCP/UDP ratios). The UDP send rate was 11.424
Mbps.

reasons of space, we report results for only one model, the “happy
Buddha” model. The Buddha model contains 1.08M faces in its
full model and 1998 faces in its base mesh. The suite of experi-
ments was run using different send rates for the UDP portion of the
model transmission.

5.1 Results for Buddha Model
Our extensions to the PM data structure cause additional splits to

be rejected because they cause geometric corruption, as discussed
earlier. The first modification generally does not cause much im-
pact on the total number of faces reconstructed. For example, over
ten trials using the Buddha model, transmitting 25% of the data
with TCP in addition to the base mesh causes less than 1% of the
splits to be rejected (893k faces reconstructed on average versus
889k faces with the absolute index modification in place). The
second modification, changing the ��� ��� field, is more severe,
and on average causes 24% of the splits to be rejected over the
method without modification (679k faces reconstructed on average
with both modifications in place). Nonetheless, we believe the im-
provement in visual quality justifies the changes.

Figure 5 shows the average transmission time for the various
transmission schemes, and Figure 6 shows the average number of
faces received versus channel capacity. In these figures, the UDP
send rate was 11.424 Mbps, and TCP was used to transmit the base
mesh plus 0 to 50% of the rest of the model. The important result
in Figure 5 is that the transmission time to send the model using
pure TCP is the longest. Moreover, as the ratio of packets sent by
TCP decreases, the transmission time improves for all given levels
of noise. To explain this behavior, one must consider what happens
when we increase the amount of noise. When the noise exceeds
the channel capacity, the channel is full, and buffers in the network
become saturated. This saturation results in packet loss. Packet
loss causes TCP to incur timeouts or apply the fast retransmission
scheme. Thus, the transmission time using TCP increases. As a
final note, the 0% TCP plot in this figure is not quite constant be-
cause, as mentioned, the base mesh is transmitted reliably using
TCP.

This transmission time improvement comes at a cost, however.
Figure 6 shows the number of faces in the received model for each
of these transmission methods. Note that TCP, since it is a reliable
transport protocol, always transmits all the faces. When a portion
of the packets are sent using UDP, significant packet loss can oc-
cur, and this loss becomes worse as the noise increases. There-
fore the selection of an appropriate hybrid protocol will depend on
the tradeoff between the transmission time and the visual degrada-
tion that occurs when packets are lost. The visual degradation of
this process is shown in the Buddha model in Figure 7. This fig-



85 90 95 100 105 110 115 120 125 130 135
0

200

400

600

800

1000

1200

Average Channel Capacity Used by Noise (expressed as % of total)

N
um

be
r 

of
 F

ac
es

 in
 R

ec
ei

ve
d 

M
od

el
 (

th
ou

sa
nd

s)

Average Number of Faces in Received Model vs. Channel Capacity for UDP send rate = 11.424 Mbps

0% TCP
12.5% TCP
25% TCP
50% TCP
100% TCP

Figure 6: The number of faces received of the Buddha model
versus channel capacity for the different transmission schemes
(TCP/UDP ratios). The UDP send rate was 11.424 Mbps.

Figure 7: The Buddha model after transmission over a lossy
network: (a) the full model as sent by TCP; (b) model received
when 50% transmitted by TCP; (c) model when 25% sent by
TCP; (d) model when 12.5% sent by TCP; (e) model when fully
sent via UDP.

ure shows the models that were received in one experiment using
a UDP send rate of 11.424 Mbps and where the noise consumed
109% of the channel capacity. In particular, the visual quality of
the model is excellent when 12.5% of it is transmitted via TCP.
TCP took on average 131 seconds to transmit at this noise level,
while the average transmission time for the 12.5% scheme was 27
seconds, a considerable savings.

A significant concern in any transmission scheme is that the band-
width of the scheme is minimal. In Figure 8, we compare the num-
ber of bytes used to transmit the Buddha model by both TCP and
UDP as we increase the amount of background noise. UDP is con-
stant by design—it is equivalent to the TCP 0% line in the previous
figures. Note that TCP uses more bandwidth as the noise increases,
from 1.3 to 4.6%. This result is unsurprising since TCP must re-
send lost packets, requires the use of acknowledgments, and has
a larger header size than UDP packets. Note that the comparison
in Figure 8 does not include the bandwidth of packets used to ac-
knowledge receipt of data by the PM receiver.

6. CONCLUSION
In this paper, we have modified the progressive mesh data struc-

ture to enable it to more robustly transmit 3D geometric data over
lossy channels. We demonstrated this modification in the context
of a hybrid transmission scheme, and showed that the hybrid ap-
proach improves the transmission performance. This improvement
in performance comes at the cost of lost packets. The progressive
mesh representation allows us to minimize the visual impact when
packets are lost, although some surface corruption is visible. The
visual results indicate that geometric corruption has minimal im-
pact on the visual quality of the mesh.

80 85 90 95 100 105 110
15.9

16

16.1

16.2

16.3

16.4

16.5

16.6

16.7

Average Channel Capacity Used by Noise (expressed as % of total)

N
um

be
r 

of
 B

yt
es

 (
M

B
)

Total Bytes Sent by TCP and UDP

Figure 8: Total bytes sent by TCP (dashed line) and UDP (solid
line) versus noise in the channel. Note that the UDP send rate
is constant, but the number of bytes sent by TCP increases as it
must resend data due to lost packets.

We are currently investigating methods of representing and re-
constructing the progressive mesh that eliminate this corruption
with less overhead than employing a forward error correction (FEC)
code arbitrarily on the data.

REFERENCES
[1] AL-REGIB, G., AND ALTUNBASAK, Y. An unequal error

protection method for packet loss resilient 3-d mesh
transmission. In Proceedings of INFOCOM 2002 (2002).

[2] ALLIEZ, P., AND DESBRUN, M. Progressive compression
for lossless transmission of triangle meshes. In Proceedings
of ACM SIGGRAPH 2001 (July 2001), Computer Graphics
Proceedings, Annual Conference Series, ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, pp. 195–202.

[3] BISCHOFF, S., AND KOBBELT, L. Streaming 3d geometry
over lossy communication channels. In Proceedings of the
IEEE International Conference on Multimedia and Expo
(2002).

[4] CHEN, Z., BODENHEIMER, B., AND BARNES, J. F. Robust
transmission of 3d geometry over lossy networks. In Web3D
2003 Symposium Proceedings (St. Malo, France, Mar. 2003),
ACM SIGGRAPH, pp. 161–172.

[5] EVERQUEST. http://everquest.station.sony.com.
[6] GANDOIN, P.-M., AND DEVILLERS, O. Progressive

lossless compression of arbitrary simplicial complexes. ACM
Transactions on Graphics 21, 3 (July 2002), 372–379. ISSN
0730-0301 (Proceedings of ACM SIGGRAPH 2002).

[7] HOPPE, H. Progressive meshes. In Proceedings of
SIGGRAPH 96 (New Orleans, Louisiana, August 1996),
Computer Graphics Proceedings, Annual Conference Series,
ACM SIGGRAPH / Addison Wesley, pp. 99–108. ISBN
0-201-94800-1.

[8] HOPPE, H. View-dependent refinement of progressive
meshes. In Proceedings of SIGGRAPH 97 (Los Angeles,
California, August 1997), Computer Graphics Proceedings,
Annual Conference Series, ACM SIGGRAPH / Addison
Wesley, p. I198. ISBN 0-89791-896-7.

[9] HOPPE, H. Efficient implementation of progressive meshes.
Computers & Graphics 22, 1 (February 1998), 27–36. ISSN
0097-8493.

[10] PAJAROLA, R., AND ROSSIGNAC, J. Compressed
progressive meshes. IEEE Transactions on Visualization and
Computer Graphics 6, 1 (January - March 2000), 79–93.
ISSN 1077-2626.


