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Abstract— This paper presents results from the application of
dimensionality reduction algorithms to sensory-data time-series
that were recorded from Robonaut – NASA’s humanoid robot –
while it was being teleoperated through four tool manipulation
tasks. The algorithms tested were Principal Component Anal-
ysis, Multidimensional Scaling, and Spatio-Temporal Isomap.
Structures were shown to exist in some cases, but their detection
required careful analysis and a correct choice of parameters.

Index Terms— Spatio-temporal learning, dimension reduc-
tion, robotics, dexterous manipulation.

I. I NTRODUCTION

A S observed by Pfeifer, sensorimoter coordination (SMC)
data can self-organize into descriptors that categorize

the interaction of a robot with its environment [17]. Similarly,
our focus is on the mapping from sensory observations to
motor commands, the essence of robot control. This mapping
defines a structure in the robot’s sensorimotor state space
(SMSS). Understanding and visualizing such a structure
would potentially be of great value in improving control
policies for a complex robot. Simply watching a robot’s
sensorimotor data stream during operation often reveals
patterns that are indicative of a structure. Unfortunately,
the robot’s sensorimotor state space is high-dimensional,
having dimension equal to the number of scalar observations
(sensory and motor) relevant to the control of the robot,
which makes visualizing and understanding structures in
the SMSS difficult. However, it is likely that the intrinsic
dimensionality of control and action strategies in the SMSS
is of a much lower dimensionality, and in fact, describes a
manifold immersed in the SMSS. In this paper, our goal is
to employ dimensionality reduction and manifold learning
techniques to understand the manifold structure of control
and action strategies for a robot.

Many robot tasks (such as dexterous manipulation) may
have latent sensorimotor structures that could be uncovered
through manifold learning. In repetitive, constrained motion
by the robot (e.g., repeatedly reaching toward and grasping
an object), the dominant vari- ables tend to trace low-
dimensional nonlinear manifolds in the SMSS. Repetitive
variations of a task under different conditions lead to a

family of trajactories that lie on a manifold surface of the
SMSS. Given the sensorimotor data from these variations
in the SMSS, in this paper we apply several dimensionality
reduction techniques to learn the structure of the lower-
dimensional manifolds. In particular, we employ PCA [10],
MDS [9], Isomap [21], and Spatio-Temporal Isomap [12] to
learn the manifold strucutre. Each of these techniques learns
the manifold differently, and thus each may reveal different
aspects of the high dimensional structure. Determining the
strengths and weaknesses of these algorithms as applied to
robotic data is a further goal of this work. In particular, we
present results from the application of these techniques to
sensorimotor time-series recorded during the teleoperation of
the NASA Robonaut. Experimental results are provided for
four sets of trials pertainting to teleoperated manipulation.

As mentioned above, knowledge of the SMSS manifolds
that correspond to various robotics tasks and scenarios would
be valuable. We focus specifically on grasping and manipu-
lation tasks for humanoid robots. Uncovering manifolds for
such tasks may lead to compact descriptions of fundamental
behaviors (encapsulation or macro-generation), real-time be-
havior interpolation, recognition of key events or unexpected
events during task execution, recognition of intentionality in
the perceived behavior of a collaborator (human or robot), or
the generalization of related tasks through the detection of
vector space homeomorphisms. Furthermore, many of these
applications could be cast in terms of probabilistic reasoning,
such as particle filtering [23], where uncovered sensorimotor
structures as priors on sensor-motor experiences. In combina-
tion with clustering, functional or numerical descriptions of
these manifolds could also uncover sensory-motor categories
and lead to learning algorithms for sensorimotor coordination
and goal attainment.

II. RELATED WORK

In [16] a single SMSS trajectory was learned over six trials
that could later be performed autonomously with success in
the face of small variations in the environment or perturba-
tions of the goal. Later, it was shown that sets of such learned
trajectories could be interpolated to provide intermediate



results [6]. In addition to Pfeifer [17], many others have
studied the extraction of SMC parameters, including Cohen
[8], Grupen [7], Lungarella [13], and Peters [5].

The use of motion data to plan robotic motion is a problem
that has been studied by various groups, such as efforts by
Mataríc [15], Jenkins and Matarić [11], Ude et al. [24],
Pollard et al. [18], and Atkeson et al. [3]. Similar to this
work, Mataríc and Jenkins have used Spatio-temporal Isomap
towards the separate topic of learning predictive motion
primitives from motion capture for controlling simulated
humanoids. Isomap [22] is one of a number of dimensionality
reduction techniques including Principal Component Analy-
sis and the related Singular Value Decomposition, both of
which are textbook approaches, Multi-dimensional Scaling
[9] and Locally Linear Embedding [20]. Application of
dimensionality reduction to robotics has been studied by
many, including Asada [2], MacDorman [14], and others.

An alternative, but complimentary, approach to uncovering
sensory-motor structure is to treat is as a regression between
input (sensory) and output (motor) spaces. Several papers
by Atkeson and Schaal, including [4] address this regression
problem through the use of receptive fields. Discovery of
manifold structures could help guide the placement or repo-
sitioning of such receptors given their sensitivity to order due
to incremental inference.

III. B ACKGROUND IN DIMENSION REDUCTION

We assume sensory-motor observables, given as vectors at
ordered discrete instances of timexk : {1, 2, 3, . . . N}→RD,
are intrinsically parameterizated by a lower dimensional
embedding. The embedding provides a mappingx = φ(y)
between intrinsic parameters and observations, realizing in-
trinsic coordinatesyk : {1, 2, 3, . . . N}→Rd for the input
data whered < D . Arguably the most popular and well-
known dimension reduction technique is Principal Compo-
nents Analysis (PCA) [10]. PCA involves an eigendecom-
position on a linear covariance matrix to find an orthogonal
subspace of principal components compactly approximating
the input data.

Multidimensional scaling (MDS) [9] is another approach
where pairwise distances, rather than linear covariance, are
preserved. Given the distance between all input datapairs
Dxi,xj

, MDS produces embedding coordinates that mini-
mizes the errorE = |Dx − Dy|L2 , whereDx and Dy are
respectively the pairwise input and embedding space distance
matrices. Essentially, MDS produces embedding coordinates
that preserves thedistance metric as much as possible. MDS
is equivalent to PCA when the input space distance metric
is Euclidean[25]. Isomap [22] uses a geodesic (Dijkstra
shortest-path) distance metric with MDS, avoiding “short-
circuiting” problems.

These techniques, however, are not necessarily suited for
time-series data because they assume the input are i.i.d., in-
dependent samples from the same manifold parameterization.
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Fig. 1. (a) A 2D mouse-click trajectory color coded from blue
to red to indicate progress through time. (b) Embedding of the
trajectory using standard (non-ST) Isomap. (c,d) Two views of the
trajectory embedded by temporally-windowed MDS. (e,f) Two ST-
Isomap embeddings of the trajectory showing a collapse of the
trajectories that results from highercctn values. (g,h) The spatio-
temporal correspondences and the spatio-temporal distance matrix
computed by ST-Isomap.

Time-series data are not independent, but rather sequentially
ordered samples from an underlying spatio-temporal process.
One means to account for this temporality is to add time as
another dimension to the input data. We explore the use of a
“windowed MDS” procedure, where each input data object
is a temporally extended window of observations. Adding
time as another dimension serves to disambiguate spatially
proximal datapairs indicative of different phases of a temporal
process, but does not account for corresponding spatially
distal datapairs representative of equivalent phases in the
underlying temporal process. As we describe in next sub-
section, spatio-temporal Isomap (ST-Isomap) [12] accounts
for both proximal disambiguation and distal correspondence
(cf. section III-A).

A simple experiment illustrates the differences in these
approaches (Fig. 1). As input, two 2D “moons” (crescent



shapes) were formed from a sequence of mouse clicks
repeatedly traversing the pattern. PCA performs an affine
transformation of the data. Isomap disregards the temporal
sequencing and pushes the crescents away from each other.
Windowed MDS disambiguates each crescent traversal into
a loop. ST-Isomap uncovers a more compact description of
each loop by registering spatio-temporal correspondences.

A. Uncovering Manifolds with Spatio-temporal Isomap

A spatio-temporal manifold, an example of which is shown
in Fig. 1, can be described structurally as a1 + ε-manifold
curve in an embedding space. Successive locations on this
manifold represent successive time-instants in the spatio-
temporal process. Each location on this manifold encap-
sulates all of the spatial variations representing a certain
phase along the spatio-temporal process. Spatial variations
being different locations in input space that correspond to a
particular instance of space-time along the manifold. Thus, a
diverse set of spatial variations that correspond to the same
phase is collapsed into a single location in the embedded
manifold.

The general procedure for ST-Isomap is:
1) compute a sparseL2 distance matrixDl from local

neighborhoodsnbhd (xi) about each pointxi;
2) locally identify the common temporal neighbors

CTN(xi) of each pointxi as theK-nearest nontrivial
neighborsKNTN();

xj ∈ KNTN(xi) ⇔ j = i + 1 or (1)

i 6= j andDl
xi,xj

≤ Dl
xi,xk

, k − εw ≤ k ≤ k + εw

3) reduce distances inDl
Si,Sj

between points with com-
mon (CTN) and adjacent (ATN) temporal relationships:

D0
xi,xj

= (2)

Dl
xi,xj

/(cCTNcATN) if xj ∈ CTN(xi)
and j = i + 1

Dl
xi,xj

/cCTN if xj ∈ CTN(xi)
Dl

xi,xj
/cATN if j = i + 1

penalty (xi, xj) otherwise

4) transformD0 into a full all-pairs shortest-path distance
matrix, D = Dg (via Dijkstra’s algorithm);

5) embed D into de-dimensional embedding space
through MDS.

where nbhd() are the local neighbors of given segment,
cCTN andcATN are constants for increasing similarity between
common and adjacent temporal neighbors.penalty (xi, xj)
is a function that determines the distance between a pair with
no temporal relationship, typically set asDl

xi,xj
.

As in the case with windowed MDS, velocity alone pro-
vides only forproximal disambiguationof spatially proximal
yet structurally different data points in a time-series. By es-
tablishing local CTN correspondences, ST-Isomap performs

Fig. 2. Robonaut, NASA’s space capable humanoid robot.

disambiguation. Additionally, these local CTN correspon-
dences are propagated globally through Dijkstra’s algorithm
to establish datapairs that aredistal correspondences. Such
distal correspondences applytransitivity between a datapairs
with CTN relationships.

IV. EXPERIMENTAL INFRASTRUCTURE

We hypothesize that latent embeddings intrinsically pa-
rameterize a robot’s sensory-motor space. To explore this
hypothesis, we collected collected sets of experimental data
(sensory and sensory-motor) from teleoperation trials of the
NASA Robonaut.

Robonaut [19] (Fig. 2) was developed by the Dexterous
Robotics Laboratory at NASA’s Johnson Space Center [1].
Robonaut has two seven degree of freedom (DoF) arms (ap-
proximately the size of a human arm), two 12-DoF hands, and
a 19-DoF upper extremity. Robonaut’s hands have manual
dexterity sufficient to perform a wide variety of manipulation
tasks. During the course of its operation, Robonaut publishes
a 110-dimensional vector time-series at a nominal rate of
50Hz. This time-series data includes information about com-
mand torques, proprioceptive sensing (tactile, force, pose),
inverse kinematics, and visual exteroceptive sensing.

Although capable of autonomous operation, Robonaut is
most typically controlled via teleoperation. The operator is
provided the robot’s viewpoint with real-time video from
Robonaut’s eye-centered stereo cameras displayed through an
immersive head-mounted display. Sensors in gloves worn by
the operator determine Robonaut’s finger positions. Electro-
magnetic motion capture determines the global position and
orientation of operator’s head and hands. An operator guides
the robot using only vision without haptic or force feedback.

A. Data Collection and Robonaut Teleoperation

To explore this hypothesis, we collected collected four sets
of experimental data from teleoperation trials of the NASA



Robonaut. The first set consisted of sensory data from various
object grasping and manipulation trials. We present results
from processing this sensory data as a baseline for evaluating
embeddings of sensory-motor data. Sensory-motor data was
collected on teleoperation trials for a reach-grasp-lift-move-
release task.

As Robonaut operates, either autonomously or via teleop-
eration, it continually publishes its sensory and motor data
at a nominal rate of 50 Hz. The 110 scalar signals were
recorded during the experiments and later analyzed as a 110-
dimensional vector time-series. The four experiments were:

1) Robonaut reached toward, and grasped a vertically
oriented wrench five times at each of nine locations
in its workspace.

2) Robonaut held a power drill rigged to be a socket
driver, such that it could push the trigger with its index
finger. The robot was teleoperated to mate the socket
to four lug nuts on a wheel and actuate the trigger
to rotate the socket. Four trials were deliberate failures
and twenty (five each at each of the four lug nuts) were
successful.

3) Robonaut reached for, grasped, and lifted the power
drill out of a holster then verified that it was in the
correct position to actuate the trigger. This was repeated
four times.

4) Robonaut reached for, grasped, lifted, and dropped in
another location a vertically oriented chisel. Five of
these trials were successful, eight were not.

For experiment 1, five of the teleoperated grasps were
analyzed. In experiments 2 and 3, all the trials were ana-
lyzed. PCA, windowed MDS, and ST-Isomap were applied
to sensory data in each of these experiments. In experiment
4, we analyzed the 5 successful trials as one time series and
the 8 unsuccessful trials as another. We analyzed sensory and
motor data both collectively and individually, comprising a
total of 6 data sets. In all data sets, all the signals were
independently mean subtracted then normalized to have unity
absolute maxima. The calculations were performed over the
extent of the entire time series, not on a per-trial basis.

The results of the 4th experiment indicate that, with
normalization, the motor data predominates. There were
noticeable differences between the sensory-motor and motor
only results but they were not vastly disparate (refer to Fig.
5). While this occurrence does not invalidate our manifold
assumptions, it does suggest that more appropriate normal-
ization or sensor fusion methods are warranted.

V. RESULTS

The ST-Isomap embedding of the wrench experiment sen-
sory data is shown in Figure 3 with a comparison to embed-
ding by PCA. From (a) and (b), the structure of the grasps can
be surmised from the PCA embedding as two clusters that are
transitioned between 5 times. However, this embedding does

not clearly identify the procedural similarities in the trials. In
contrast, the common procedural structure of the task trials is
apparent in the ST-Isomap embedding, (c)-(e). There are five
contours that more or less parallel each other. Each represents
the sensory response of a single task trial. These appear to
trace a clear sensory manifold made up of four (perhaps five)
sub-manifolds. Each sub-manifold corresponds to a specific
behavior in the task. The black points mark the start of each
trial. The green curves (on the right lobe of the “bow-tie”
structure in (c) and (d) and on the left in (e)) represent the
reach toward the wrench. The red lines (that connect the
two lobes of the bow through a short distance) represent the
closure of the grasp on the wrench. The cyan contours that
make up the bulk of the other lobe indicate the holding of
the wrench. The long magenta curves (that connect the lobes
through a longer distance) represent the grasp release. The
yellow contours (that are intermingled with the green ones)
correspond to the retraction of the arm from the wrench.

The structure uncovered from the reach and grasp data
appears to characterize the sensor values at different episodes
during the task. If that were actually so, then the model would
describe the evolution of the sensory response to another in-
stance of the task (that was not used in the original analysis).
Given sensory data for this new trial, the training grasps,
and the embedded training grasps, interpolation can be used
to map the new sensory-data time-series onto the structure
found in the embedding space. Shepard’s interpolation

The manifolds estimated by ST-Isomap for sensory data
from drill mating and holster grasp did not produce as clear
a mapping of the sensory data. An appropriately extracted
looping structure can be seen in the ST-Isomap embedding.
However, this result required a significant amount of pa-
rameter tuning. We believe the artifacts in the ST-Isomap
embedding are the result of estimatinghard spatio-temporal
correspondences between common temporal neighbors. Such
hard decisions with a fixed kernel make selecting a specific
setting for neighborhood size a difficult, if not impossible,
task. We are currently exploring methods to incorporate
soft decisions and adaptive neighboring in spatio-temporal
neighborhood determination.

Our inclinations about local neighboring and correspon-
dence are supported when observing the disambiguation
results yielded by windowed MDS. Windowed MDS on the
drill mating data successfully uncovered the basic looping
structure of the mating task. Furthermore, the pressure ap-
plied during the mating of the drill and the nut is accurately
disambiguated in the embedding. In the holster grasping
task, none of the dimension reduction techniques appeared
to uncover meaningful structure. We attributed the difficulty
in analyzing this dataset to the amount of data being overly
sparse for the amount of variation contained in the data.
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Fig. 3. (a,b) Two views of the PCA embedding for the grasp data from Robonaut teleoperation. (c,d) Two views of the same data embedded by
sequentially continuous ST-Isomap. (f) Distance matrix for the ST-Isomap embedding. (g,h) A test grasp mapped via Shepards interpolation
onto the grasp structure in the ST-Isomap embedding.
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Fig. 4. Embedding of the (top) drill-to-nut mating and (bottom) take-drill-out-of-holster task sensor data sets with (a,e) PCA, (b,f) windowed
MDS, and (c,g) ST-Isomap. (d) Spatio-temporal correspondences computed by ST-Isomap for the mating task. (h) Spatio-temporal distance
matrix for the holster task.

VI. CONCLUSION

Our analysis of the sensory data from Robonaut yielded
excellent structural results in one of the three cases analyzed,
with mixed results in other sensory analysis experiments.
Our initial explorations into sensory-motor manifold learning
demonstrated some promise with the uncovering of visually
observable clusters. While promising, several questions for

manifold learning with regard to neighborhood determina-
tion, spatio-temporal correspondence, and sensor modality
normalization remain further questions to fully answer our
manifold hypothesis.
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