
OverviewOverview
PurposePurpose

•Development of technologies for 3-D imaging mass spectrometry

MethodsMethods
•Model system:

- color coded images of mouse brain slices on printed paper
•Acquisition of two data sets:

- optical and MS ion images of each model section
•Two registration steps:

- MS ion images of dyes to corresponding optical images
- each optical image to the next serial image

•Assembly of 3-D volume of the corpus callosum and the mouse brain
• Incorporation of MS data

ResultsResults
•3-D model of the corpus callosum



IntroductionIntroduction
Medical imaging plays an increasingly important role in many clinical

applications. Anatomical, physiological, and functional information can be
obtained by computer tomography (CT), positron emission tomography (PET),
and magnetic resonance imaging (MRI). However, these imaging techniques,
commonly used for the 3-D reconstruction of brain maps, do not enable the
study of protein distributions. Imaging MALDI mass spectrometry has been
successfully used to obtain the distribution of proteins in thin tissue slices [1-3].

The goal of the present study is to expand this technique by adding a third
dimension allowing the 3-D mapping of proteins in specific regions of the
mouse brain by imaging serial sections. The 3-D distribution of targeted
proteins can be an important tool for the diagnosis, early detection and
understanding of disease, such as Parkinson disease, and neuropsychiatric
disorders.



MethodsMethods
The animal model we have chosen to study is the mouse brain. The

methodology required for 3-D imaging mass spectrometry is developed in a first
approach with printed images of mouse brain slices on paper to establish
stacking parameters.

Figure 1.Figure 1. Nine serial images spanning the full corpus callosum of a male
C57Bl/6J mouse brain are downloaded from a brain atlas*. Using PhotoShop™

the downloaded images are converted to a series of model sections by color
coding the section periphery and the corpus callosum of each image blue and
red, respectively. The colored regions are extracted from the original image and
printed at a 1:1 scale on paper. A digital camera is used to record an optical
image from each of the model slices before MS ion images of the dyes are
acquired using a Voyager DE-STR MALDI TOF mass spectrometer (Applied
Biosystems, Framingham, MA) at a spatial resolution of 50 µm. The data
acquisition is performed using software developed in-house [4-5].
*http://www.mbl.org/atlas170/atlas170_frame.html



ResultsResults
Figure 2 Figure 2 and 3.3. Each ink color in the printed images of the mouse brain

slices on paper produces specific ions from which MS ion images can be
constructed. The blue ink used for the brain outline produces two characteristic
ion signals at m/z 584 and m/z 1166, and the red ink used for the corpus
callosum produces one strong ion signal at m/z 342. This mimics the
expression of different proteins in real tissue slices.

Figure 4. Figure 4. The integration of the acquired MS ion images to the optical
images requires a registration step to link the images together. This is achieved
by placing four black ink dots around the printed images of the mouse brain
slices. The four black ink dots are used as landmarks, since they are visible in
the optical image and yield unique MS signals below m/z 300. They can be then
be identified during the imaging process. To align both images a computer
algorithm [6] is used to identify the x,y coordinates of the centers of the dots in
both the optical and MS ion images.



Figure 5.Figure 5.  The next step in the registration procedure is the alignment of a
series of optical images. The external contours of the corpus callosum and the
whole mouse brain are extracted and registered to one another, according to
their position in the mouse brain, using novel image processing techniques [7].

Figure 6. Figure 6. The final stage is the 3-D reconstruction of the corpus callosum.
The surfaces (3-D shape) of both the corpus callosum and the whole mouse
brain are constructed from the extracted contours as described in [8].
Subsequently, the MS data of the red dye are extracted out of the registered
MS ion images for each individual paper slice. Finally, the 3-D shape of the
corpus callosum, the mouse brain and the extracted m/z points are combined
and rendered using a commercial renderer [9].

Figure 7.Figure 7. We are currently applying this newly developed methodology to
study the 3-D representation of proteins unique to the corpus callosum in
mouse brain tissue. Serial sections (20 µm thickness) of a male C57Bl/6J
mouse brain are cut in the range of Bregma 2 to -3 and mounted on conductive
optically transparent glass slides. Optical images of the 260 slices obtained are
recorded and imaging mass spectrometry is performed on selected slices.



Figure 1. Series of optical and MS images of model mouse brainFigure 1. Series of optical and MS images of model mouse brain
sections.sections.
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Figure 2. MS analysis of paper slices.Figure 2. MS analysis of paper slices.
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Figure 3. MS Images of Paper Slices.Figure 3. MS Images of Paper Slices.
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Figure 4. Registration of optical image to corresponding MS  image.Figure 4. Registration of optical image to corresponding MS  image.
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Figure 5. Extraction of the contours of (a) the corpus Figure 5. Extraction of the contours of (a) the corpus callosumcallosum, (b) the whole mouse brain,, (b) the whole mouse brain,
and (c) overlay of the the edges of the corpus and (c) overlay of the the edges of the corpus callosumcallosum of all nine slices. of all nine slices.
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Figure 6. Computer-assisted 3-D reconstruction of the corpus Figure 6. Computer-assisted 3-D reconstruction of the corpus callosumcallosum..
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Figure 7. MS images of serial mouse brain sections.Figure 7. MS images of serial mouse brain sections.
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ConclusionsConclusions
The stacking parameters essential for 3-D imaging mass spectrometry were

successfully developed with printed images of mouse brain slices on paper.
The next stage is the integration of 3-D warping parameters using real mouse
brain tissue in order to advance this technique for the 3-D mapping of marker
proteins in the mouse brain.
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