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Abstract

The applicability of employing parameter-dependent control
to a nuclear pressurized water reactor is investigated. The
synthesis technique produces a controller which achieves
specified performance against the worst-case time variation
of a measurable parameter which enters the plant in a linear
fractional manner. The plant can thus have widely varying
dynamics over the operating range. The controllers designed
perform well over the entire operating range.
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1 Introduction

In France and certain other countries the major contribution
to electricity production is provided by nuclear power. When
this is the case, the nuclear power plant must provide elec-
tricity as it is needed, and the plant becomes a time-varying
system with dynamics changing slowly as the internal power
changes. Nonetheless, large transients can occur, for exam-
ple, when the plant shuts down. Most nuclear power plants
are pressurized water reactors (PWR). The dynamics of a PWR
change enough over its operating range that a linear con-
troller cannot guarantee performance over the entire range,
especially when operating conditions change suddenly. In-
deed, previous work [BenBod94] showed that a fixed linear
controller such as an #H« controller cannot maintain perfor-
mance in the presence of parametric uncertainty correspond-
ing to the change in the operating conditions of the actual
plant.

In designing controllers for plants which operate over a
wide dynamic range, a common technique is to schedule var-
ious fixed-point designs. Unfortunately, there are no known
methods for scheduling such controllers which provide an a
priori guarantee on the resulting performance or stability of
the closed-loop system. Additionally, large and often unac-
ceptable transients can occur when switching between con-
trollers. Recent advances in optimal control theory provide a
design technique which avoids these difficulties by producing
an optimal parameter-dependent controller; i.e., the controller
is already scheduled depending on parameter values which
are not known beforehand [Pac94, ApkGah94]. The controller
is optimized to provide performance against the worst-case
time variation of the parameters. Such a controller is called a
linear parameter-varying (LPV) controller.

If a fixed linear controller is not capable of maintaining per-
formance over the entire operating range, then a possible ap-
proach to control a PWR is to design a parameter-dependent
controller with the output power as the parameter. One ad-
vantage such a controller would have over a standard gain-
scheduled controller is that performance and stability could
be guaranteed over the operating range of the plant, and large
transients ir switching are avoided. An additional advantage
of LPV synthesis is that the controller is designed in one step,
rather than by designing several controllers and then schedul-
ing them. The potential drawback of LPV synthesis is that the
technique is conservative. This conservatism may be so great
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Figure 1: Primary Circuit and Steamn Generator.

that the controller performs quite poorly. Qur goal in this pa-
per is to determine if LPV synthesis can produce controllers
which have reasonable performance, and possibly produce a
better control design for the PWR.

Section 2 is devoted to the problem statement; in section 3,
the model of the PWR as it pertains to LPV design is discussed.
Section 4 overviews the synthesis theory, and the structure for
controller design on the PWR; the behavior of these controllers
is examined in section 5. Our conclusions and some directions
for future work end the paper.

2 Problem Statement

The main objective in controlling a PWR is to provide the com-
manded power while respecting certain physical constraints.
Consider the application depicted in Figure 1. This is the pri-
mary circuit, and our goal is to control this part of the reac-
tor. The pressurized water in the primary circuit transmits the
heat generated by the nuclear reaction to the steam generator.
In the steam generator, water of the secondary circuit turns
into hot steam, which drives a turbo-alternator to generate
electricity. The rate of the reaction is regulated by the control
rods. The rods capture neutrons, slowing down the nuclear
reaction; withdrawing them increases the reaction. The PWR
has two independent sets of rods which are used as controls.

The PWR has an inner control loop which holds the pressure
in the primary circuit constant. Thus for a steam flow increase
in the secondary circuit, the temperature in the primary circuit
will decrease. From a control standpoint, the required power
corresponds to a specific steam flow that may be viewed as a
measurable disturbance. Hence, one natural control objective
is to track a temperature reference derived from the steam
flow. Because of the way in which the control rods enter the
reactor, the rate of reaction is always higher at the bottom
of the reactor. The axial offset is defined as the difference
in power generated between the top and bottom of the PWR.
Safety specifications require minimizing the axial offset; this
also increases the lifetime of the fuel and reduces operating
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Figure 2: Closed-loop responses of an #, controller with lin-
earized models of the PWR at 0.5P;, (solid), 0.9P;, (dark), and
0.99P,, (light).

costs. To achieve such objectives two control inputs are avail-
able, the rates of motion of the control rods, denoted u; and
u2. The positions of the control rods are denoted vy and vz,
respectively. The positions are, of course, measurable. Due
to the physics of the reactor, u, has more authority than u;
at low power, and using it results in a smaller axial offset.
At high power, however, u; has almost no authority, so all
control must come from u;.

Due to the complexity of the physical plant, performance
specifications cannot be uniquely or easily derived. Indeed, in-
vestigations into the best performance specifications are cur-
rently underway at Electricité de France (EDF). In [BenBod94],
we made the first attempt to automatically control the axial
offset, a specification we will also use here. Nonetheless, we
do not have precise specifications the controllers must meet.

Previously, the authors designed an #o controller using
a linear model of the plant identified at 50% of the nominal
power, P, [BenBod94]. In addition to actuator dynamics and
modelling error, the uncertainty description covered the vari-
ations in dynamics of the plant depending on power with time-
invariant uncertainty. This controller performs satisfactorily
up to 0.9P;,, but not at 0.99P,,. Figure 2 shows the step-
responses of the closed-loop systems. Ty, is the mean tem-
perature of the plant, and T,y (dashed lines) is the reference
signal. Py is the primary power P, and d (dashed lines) is the
steam flow input. Input-output signals corresponding to the
nominal model are plotted in solid lines while those result-
ing from the perturbed models corresponding to 0.9P, and
0.99P,, are displayed in dark and light shaded lines, respec-
tively. The control signals are plotted in dark (u;) and light
(u2) shaded lines. The above suggests that a linear controller
is not enough to ensure performance over the entire operating
range.

3 Modeling

The synthesis technique for designing a parameter-dependent
controller requires a model which has accurate dynamics over
the operating range of interest. A general time-varying system
is shown pictorially in Figure 3, where x(k), e(k), y (k), w(k},
and u(k) are the state, error, measurement, disturbance and
input vectors, respectively. We assume the time-variation of ,
the plant can be represented as a linear-fractional transforma-
tion (LFT) of a parameter and a constant matrix. Thus P(k) is
given by

P(k) = Pap + Po1A(k) (I - P11 ACK)) L Prp o))
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Figure 3: Time-Varying System.

where
61(K)In,

A(k) = (2)

Sm (K)Iny,

with |8;(k)| < 1 for all k. The §; are assumed to be mea-
surable. Any rational time-varying system can be represented
in this framework, and many others can be arbitrarily closely
approximated. This type of system is known as a parameter-
dependent LFT system.

Previous work on the PWR ([Benlrv93]) identified three sixth-
order linear models which characterize the behavior around
0.5P,, 0.9Py, and 0.99P,. These models were identified
using a realistic non-linear simulator of the PWR developed
by EDF. As described in [BenBod94] the models can be re-
duced quite accurately to first-order models using frequency-
weighted balanced truncation. Our model in the form of Equa-
tion 1 will be derived using these first-order models.

To derive the parameter dependence, each term of the three
first-order models is compared; those which vary are individ-
ually fitted with a rational function of 8, -1 < 6 < 1, us-
ing a least-squares technique. For the PWR, first order LFTs
of the form e + f6(1 — g&)~1h fit the parameters extremely
well, as shown in Figure 4. In this figure, 0.5 corresponds
to § = ~1, 0.9Py corresponds to § = 0.6, and 0.99P;, to
& = 0.998 (these are the asterisks in the figure). The resulting
model with §-dependence, P(8), becomes

ad) by by (8) by, (6)
|: A B ]: a di di2 ATm,(6) @)
C D 2 di2 d2» Kby, (6)
ca0(8) 0  dao,(9) ds3

The inputs for this model are the steam disturbance 4, v,
and vy; the outputs are the mean temperature Ty, the power
P, and the axial offset AO, respectively (see Figure 1). Placing
this model in the form of Equation 1 results in a system shown
in Figure 5, where ng = 1 and A = [8Ix61.

From Figure 4, notice the system matrix a(6) is inversely
proportional to the operating power, and the time constant
changes by a factor of 2 over the operating range. Also, the
variation of b, and dp, differs only by a constant, «, which is
used to reduce the size of the final A-block. More importantly,
the effectiveness of u; decreases as the power increases, and
is almost zero at full power. The gain in the axial offset chan-
nel increases as power increases, making it more difficult to
control at high power. In particular, the effect of u; on the
axial offset (d40, ) increases, while the effect of u> is decreas-
ing. This makes it practically impossible to require any per-
formance on axial offset at high power.

4 Synthesis

In this section a brief overview of the synthesis theory is pre-
sented. Since our intent is to convey only a general under-
standing of the theory, we will be somewhat loose in our no-
tation. A complete and rigorous explanation of the synthesis
technique can be found in [Pac94].

From the previous section, the plant has the structure given
in Figure 5. The controller we will design for this plant will
also be parameter-dependent, depending on the same mea-
surzible &;’s as the plant; these copies are collectively denoted
by A. K thus has the form shown in Figure 6. P can be aug-
mented to collect all the time-varying parameters and states
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Figure 4: Parameter Variations versus § for the model of Equa-
tion 3. A **’ shows an actual value, and the line shows the LFT
fit.
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Figure 5: Parameter-Dependent Plant. The z*llno term repre-
sents the states of P, and the A represents the time variation
of Equation 2.

together; K can then be treated as a simple matrix. This is de-
picted in Figure 7, where R is the augmented form of P, and
K is a matrix. The problem thus appears as a robust control
problem with a special structure on the plant and parameters.
The design objective is to find a controller K such that the in-
terconnection is stable and the #> — £ induced norm from w
to e is small for all allowable parameter variations A(k) (see
Equation 2). This is simply a small-gain condition. Since the
small-gain theorem can be quite conservative, we can reduce
the conservatism by introducing scaling matrices from a set
D which commutes with the set of parameter variations.

The resulting condition is then the state-space upper bound
(SSUB) of [PacDoy93]. Introducing the notation F;(R,Q) =
R11+R12Q(I-R22Q) "1 Ry for ablock partitioned 2 x 2 matrix
R with det(I - R22Q) + 0, this condition becomes {compare
Lemma 3.1 of [Pac94] and Theorem 10.4 of [PacDoy93)):
Theorem 1 LetR be given as above, along with an uncertainty
structure A. If there is a D € D and a stabilizing, finite-
dimensional, time-invariant K such that

-1

[ 13 (I) ]fz(R,K)[ DO ? ]
then thereisay, 0 <y < 1, such that for all parameter se-
quences 6i(k) with ||8ille < 1, the system in Figure 7 is in-
ternally exponentially stable, and for zero initial conditions, if
w € £y, then lellz < y [wlz.

Pictorially, this theorem is shown in Figure 8. The important
fact about Theorem 1 is that the synthesis of D and K to meet

the objective can be cast as a computationally tractable convex
optimization problem involving 3 LMIs. These LMIs have the

<1 (4)
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Figure 6: Parameter-Dependent Controller; z~1I,, represents
the states of the controller and A the time variations.

K

Figure 7: Parameter-Dependent Closed-Loop System.



Figure 8: Diagram of Theorem 1.

following form:

X 0 X 0
T T _
UL<E{O I}E [0 I:I)Ul<0
X I
[[ Y]zO

where U,, V., and E are obtained from the system realiza-
tion, and X and Y are structured positive definite matrices.
Interested readers may find the exact LMIs in Theorem 6.3 of
Packard [Pac94]. E, U, and V have a scaling y absorbed into
them, and thus the synthesis procedure is a y-iteration, as
H is. Once a desired y level has been reached, a controller
K can be obtained by linear algebraic operations on X and Y.
A few points are important in understanding the ramifica-
tions of employing the state-space upper bound (SSUB). Most
importantly, this technique results in a controller optimal
with respect to a time-varying perturbation with memory (the
sequence A(k) of Equation 2, becomes a time-varying oper-
ator with memory, rather than a sequence of complex num-
bers). The relationship between such an operator and a pa-
- rameter useful in gain-scheduling is tenuous, at best. Depend-
ing on the problem, this technique could conceivably yield
controllers so conservative as to have extremely poor perfor-
mance. Nonetheless, if a controller with acceptable perfor-
mance can be designed with this technique, then it will have
at least the same level of performance for all variations of the
operating point (the operating point is a fixed value of A). Ad-
ditionally, a time-varying operator with memory does not in
general have a frequency spectrum, so there is no way to “fil-
ter” it to achieve a closer relationship to an operating parame-
ter. Moreover, it is interesting to contrast this technique with
u-synthesis where instead of the SSUB the frequency-domain
upper bound is usually employed; this difference reflects the
different assumptions about the type of perturbations.

4.1 Controller Design

Once the parameterized model P(§) is obtained, the controller
design becomes similar to an H design. Both IPV and H
synthesis produce controllers which reject disturbances. A
tracking problem, such as the PWR, can be cast in this frame-
work by rejecting the low frequency components of the error
between the plant output and the reference. The tracking will
become faster as higher frequencies are rejected. The synthe-
sis structure used is shown in Figure 9, with uncertainty and
performance weights included. In particular, Wy, s, wq, and
wy, are weighted reference, disturbance, and noise signals, re-
spectively.

Wm is a multiplicative uncertainty weight covering unmod-
elled dynamics, error introduced by model reduction, and
modelling errors as the plant changes operating point. The
performance weight W), is a diagonal matrix

Wi

Wy = (5)

Wao
Wpos
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Figure 9: Synthesis structure for the PWR.

which weights the performance on temperature, power, axial
offset, and vertical position of the control rods. To insure low
steady-state error in tracking, Wr,, resembles an integrator.
These weights can depend on & as well, so, ideally, high per-
formance could be required at one operating point and lower
performance at another. Nevertheless, since a & in the weight
adds another time-varying perturbation with memory, it may
be that performance is degraded instead.

Two controllers were designed. The first is called “LPV #1”
and is an LPV controller with weights similar to the weights
employed for the Ho controllers of Figure 2. The second is
called “LPV #2” and uses the same weights as LPV #1, except
Wao was allowed to depend on 6. Wap was designed to re-
quire high performance in axial offset for § ~ —1, but less
performance as & — 1.

5 Results

The LPV controllers will be compared with #{o, controllers de-
signed for the plant models at 0.5P;, and 0.99%;. The con-
troller designed at 0.5%Py will be called “H50” and the one at
0.99P, “H99.”

Figure 10 shows the step responses of the closed-loop sys-
tems consisting of each of the controllers and a linearization
of the plant at 0.99P,. Step responses are shown because
we are interested in the low frequency rejection properties
of the closed-loop system. In the first column of plots, the
dashed lines are the reference signals; the solid lines are the
responses with the first LPV controller; the light shaded lines
are with the second LPV controller; the dark shaded lines are
with H99. The second column of plots shows 1; and u; for
each of the controllers; 1 is the solid line and u; the shaded
one. Figure 11 is identical to Figure 10, except the responses
are with respect to a linearization of the plant at 0.5P,.

Because the control rods are almost withdrawn from the
reactor at high power, the plant is more difficult to control.
Referring to Figure 10, the LPV controllers are almost identical
in behavior. They perform equally well, but are not as fast as
H99, although they have no overshoot on the temperature.
The noticeable difference is that the LPV controllers have less
axial offset than H99. At this power, we consider LPV #2 the
best of these controllers.

Some of this behavior is preserved in Figure 11, but the
model is quite different here. Here H50 is slightly faster than
the LPV controllers. The major difference at this power is that
u> has more control authority at this power, so controllers do
better to use it more than u;, since this results in lower axial
offset. H50 does use it more, and the axial offset is consider-
ably lower. At this operating point, we consider H50 the best
controller.

At low power, up is the dominant control, but as the power
increases u; should be used more and more to better meet the
control objectives. The LPV controllers do not change strat-
egy between these operating points. Notice that the control
plots for LPV #2 are almost identical, up to a scale change in
magnitude. This is probably a result of the worst-case nature
of LPV controllers. Since achieving worst-case performance
does not require a change of strategy, and may in fact forbid
one, the controllers do not change their use of the inputs.

Next, the behavior of the LPV controllers on a nonlinear
simulator of the PWR is shown. EDF would not allow the
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Figure 10: Comparison of Three Controllers at 0.99%,,.

use of the nonlinear simulator used previously for identifi-
cation [BenBod94] and thus a nonlinear simulator based on
first principles models was used. This simulator is not the
simulator the synthesis model was identified from, and has
less accurate dynamics. Nonetheless, the one used is reason-
ably accurate and provides a satisfactory way to simulate the
behavior of the closed loop system. The simulator includes
models for the pressurizer, steam generator, and turbine, but
not the alternator. The largest underlying change between the
simulator used for identification and the simulator used for
evaluation is that the former simulator was used assuming the
nuclear fuel was new, while the latter is configured for nuclear
fuel which is at half its expected lifetime. In particular, as the
fuel ages it becomes less active, and thus control authority is
increased.

Figures 12 through 14 show the simulation results. In these
figures, the response of LPV#1 is shown in shaded lines, the
response of LPV#2 is shown in solid lines, and the references
are shown in dashed lines. Also, 143 is shown in shaded lines,
and u; in solid lines. Figure 12 shows the response to a one
percent step around 0.997P,,. LPV#2 is faster, and introduces
less axial offset. This difference is even more noticeable in Fig-
ure 13, which is a two percent step around 0.5%P,. Comparing
these results to the linear simulations, there is overshoot and
the response is slower. LPV#2 clearly outperforms LPV#1 in
the nonlinear simulations.

Finally, the response of the LPV controllers to a large tran-
sient is shown in Figure 14. This is a ramp of —30%/minute
from Py, to 0.5Py. There is not much difference in either LPV
controller on this trajectory. This is not surprising, as stability
for large transients is inherent in the LPV methodology, pro-
vided that the synthesis model is accurate over the operating
range.

6 Conclusion

In this paper we investigated using an LPV controller to con-
trol a PWR. The controllers were simulated first on a linear
simulation and then on a complete nonlinear simulation with
both small changes and large transients. The controllers per-
formed well, especially LPV#2, and this demonstrates that the
LPV design methodology is applicable to a realistic complex
system. Our result is particularly interesting since the dy-
namics of the PWR change slowly, but the LPV synthesis is
a worst-case time-varying design. The prejudice against ap-
plying this technique is that worst-case time variations are
“fast”, and thus controllers with low performance would re-
sult. The LPV controllers compared favorably with linear con-
trollers on a linear simulation. On the nonlinear simulation,
the LPV controllers performed well even for small operating
changes, where the assumptions on the uncertainty are ex-
tremely conservative.
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We have not presented a complete controller design for the
primary circuit of the PWR. A complete control system would,
for example, account for saturation nonlinearities in the in-
put signals, and usually has a dead-band built-in to minimize
the movement of control rods to small variations in operating
conditions. Accounting for saturations to prevent wind-up is
certainly an essential component of any realistic design, and
will be considered in our future efforts towards design of a
complete system. Our next goal is to re-examine the tempera-
ture reference to determine if a reference derived differently
leads to better minimization of the axial offset.

An advantage of the LPV designs over conventional methods
of gain scheduling is they design a controller of fixed order
that works reasonably for all plants in the operating regime.
Their major drawback for the PWR is they do not switch con-
trol strategy between low and high power. This is perhaps
attributable to the worst-case nature of the designs, but meth-
ods are now being investigated which attempt to alleviate this
problem without losing the performance guarantees.

Additionally in this paper, we demonstrated that parameter
variations can be placed in weights with beneficial effect. This
is the first time a design has been tried using this technique,
and it is important because for many systems, one can ex-
pect dynamics to change so much that “frozen” time-invariant
specifications will not yield adequate performance. This type
of problem arises even in adaptive control.

A further question to explore is whether the size of the time-
varying parameter block (in the case of P(4), 6) is a signifi-
cant factor limiting the performance. P(6) could be reduced
and controllers designed for the reduced-order plant. Do they
work and achieve significantly better performance? One way
of checking whether the plant is reducible in the size of the
A-block is to treat the state as an input and output, and the
A-block as the state, then look at the Hankel singular values
of the system. For the PWR they are: 2.5448, 0.1031, 0.0325,
0.0187, 0.0152, and 0.0035. This indicates the size of the
A-block could probably be reduced by at least one. A more
sophisticated method is found in [Beck94], where the state is
included in the reduction, i.e., true multidimensional model
reduction. This technique provides reduction of the uncer-
tainty description in a manner similar to balanced truncation
model reduction. Preliminary results with this also indicate a
reduction of one is quite reasonable.
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