WP-4 3:50

Proceedings of the 33rd
Conference on Decision and Control
Lake Buena Vista, FL - December 1994

Identification and /., Control Design for a Pressurized Water Reactor

Pascale Bendotti and Bobby Bodenheimer
pascale@hot.caltech.edu bobby@hot.caltech.edu
Electrical Engineering, 116-81
California Institute of Technology
Pasadena, CA 91125

Abstract

The objective of this paper was to design controllers for
a Pressurized Water Reactor using model based control
techniques. To this end, the physical system was iden-
tified from experimental data using a multi-input multi-
output state-space description; an #, controller was
designed using a lower order model of the plant. Of par-
ticular importance, the frequency weighting functions
were chosen to reflect the robust stability and nominal
performance requirements. Although a nonlinear con-
troller is required, the results demonstrate the effec-
tiveness of the proposed controller in a relatively wide
operating range.

1 Introduction

Most nuclear power plants are Pressurized Water Re-
actors (PWR). Moreover, in France and in some other
countries the major contribution to electricity produc-
tion is provided by nuclear power. Therefore, nu-
clear power plants have to provide on-line the required
amount of energy. This energy is time-varying, which
was not the objective of the controllers originally imple-
mented for the control of the PWR. Due to the change
in the specifications, the control system needs to be re-
designed, with model-based control techniques.

The first problem addressed in this paper is the iden-
tification of a multi-input multi-output model which
captures the main dynamical features of the plant, with
the condition that the identified model should be rea-
sonably simple and should minimally cover the experi-
mental data set. Due to the complex nature of the actual
physical system, the linear time-invariant model iden-
tified experimentally cannot predict the real system'’s
dynamical behavior. Recent work in feedback synthe-
sis theory has bred methodologies which result in con-
trollers with a guaranteed robustness and performance
for a given mathematical model of a physical system.
For these guarantees to also hold on the actual system, a
robust control design methodology is needed, that takes
the discrepancies between the physical and mathemat-
ical model into account. This leads to the second prob-
lem addressed in this paper. An #,. methodology is
used to design the controller. Using a similar approach,
previous results have been obtained with an H, con-
troller [1}].

In the following sections of this paper, the control
approach employed is presented in distinct steps: prob-
lem statement, system identification, design model, un-
certainty description, performance specifications and
H. control design.
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2 Problem Statement

The main objective in controlling a PWR is to pro-
vide the commanded power while respecting physical
constraints. Consider the application depicted in Fig-
ure 1. The pressurized water in the primary circuit
transmits the heat generated by the nuclear reaction to
the steam generator. In the steam generator, water of
the secondary circuit turns into hot steam which drives
a turbo-alternator to generate electricity. The rate of the
reaction is controlled by control rods. The rods capture
neutrons thus slowing down the nuclear reaction; with-
drawing them increases the reaction.

From a PWR control standpoint, the required power
corresponds to a specific steam flow input that may be
viewed as a measurable disturbance. A natural control
objective is to track a temperature reference derived
from the steam flow. Because of the way in which the
control rods enter the reactor, the rate of reaction is
always higher at the bottom of the reactor. The axial
offset is defined as the difference in power generated
between the top and the bottom of the PWR. Safety spec-
ifications require the minimization of the axial offset.
To achieve such objectives, two inputs are available to
control the rates of motion of the control rods, called
u; and u. The vertical positions of the control rods are
measured and will be denoted v, and v». The physics of
the reactor make it so u, has more authority than u; at
lower power, and using it results in a smaller axial off-
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set. Athigh power, however, u, has almost no authority,
so all control must come from u;.

The actual control strategy is not multivariable, butis
a two-step procedure. First, the second input is a non-
linear multiple of the required power, implemented in a
feed-forward manner. Second, the PWR temperature is
controlled using the first control input u; with a nonlin-
ear PID controller. The axial offset is not explicitly taken
into account in this control strategy. In particular, the
measurement of the axial offset is not used. A multivari-
able controller is needed to deal with the above short-
comings. However, as the proposed controller is linear,
some limitations on achievable performances depend-
ing on the operating conditions are expected.

3 System Identification

System identification is a necessary part of any model
based control design. From an identification point of
view, the problem is to demonstrate that a complex sys-
tem can be represented by a MIMO state-space descrip-
tion of relatively low order.

3.1 Identification Experiments

In the present case, the identification experiments
have been carried out using a realistic nonlinear sim-
ulator developed at Electricite de France (EDF). As the
model of the simulator is based on partial differential
equations, it cannot be represented completely over all
frequencies by a finite-dimensional model. The experi-
mental planning should therefore be set up such so ma-
Jjor dynamic components are captured in a given fre-
quency range.

The system possesses nonlinearties of two types. The
first depends on the operating condition and hence is
strongly related to the commanded power. No a priori
knowledge can be used in the identification process for
this type of nonlinearity, so the experimental data are
obtained around different operating points, and the re-
sulting model is a linearization at the operating point.
The second nonlinearity is on the input magnitude of v»:
this control becomes ineffective when the commanded
power tends to its maximum. This maximal value is
usually referred to as the nominal power of the plant,
Pn. The static characteristic of the input effectiveness is
actually known a priori, so its inversion allows identifi-
cation close to the nominal power, where the nonlinear
effect is maximal.

3.2 MIMO State-space Description

Consider the system depicted in Figure 2, where T},
AO, P;, d, v; and v, are the temperature, the axial offset,
the power, the steam flow and the vertical positions of
the rods, respectively.

The physical system is described by a linear time-
invariant (LTI) system around an operating point given
by the following:

x(t+1) = Ax(t) + Bv(t) + Td(t) 1)
ys(t) = Cx(t) + Dv(t) )

Tm  «—{ Nuclear fe—— W
AO  -— . le—— V>
P Boiler le — 4

Figure 2: Plant System

with

Tin (1)

ys(t) = (AO(t)) and v(t) = (:153)
Pi(t) :

where x(t), ys(t),v(t) and d(t) represent the state, the

output, the input and the disturbance, respectively, at

time t. The parameters of the state-space realization

consist of the elements of the A, B, C, D and I' matrices.

Since the number of parameters rises quadratically
with the state dimension, there are a large number of
them in a state-space realization. To meaningfully re-
duce them, specific realizations are used where some
parameters are fixed at either zero or one, for example,
the well known MIMO canonical forms. Unfortunately,
these realizations still contain too many parameters to
be uniquely identified.

Re-parameterizing the realizations using physical
considerations can overcome this problem. Preliminary
identification of several SISO and MISO transfer func-
tions are performed to provide insight into an appropri-
ate re-parameterization (cf. References in [2]). Indeed,
the primary temperature and power are mainly related
to the control inputs by a second and first order system,
respectively. Furthermore, the inputs affect the plant
dynamics in an identical manner, although the gains are
different. The axial offset is almost a linear combination
of the inputs: thus no states are needed for it. These
insights provide an appropriate identification-oriented
state-space realization structure. Hence, only the tem-
perature and the power have dynamics. The effect of
the disturbance has a larger delay than the effect of the
control and hence the dimension of the state must re-
flect this. More precisely, 3 delay values for each of tem-
perature and power (instead of 2 and 1, respectively, in
the disturbance-free case) are required to appropriately
predict the input-output behavior. This leads to a sixth
order state-space realization defined as follows:

0 1 0 0 0 O

0O 0 1 0 0 O
A= aj' al* a' 0 al? o
10 0 0 0 1 o
0 0 0 0 0 1
a' 0 0 af? af? a®?
b} b} 0
00 0
_1 00 _1r
B=foo|'T=]% 3)
00
00 Y6
100000 00
C=(Oc§0c§00),D= d;d‘%2
000100 d} ds
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The state matrix A can be partitioned as follows:
An A
A= (AZI A )

where A;; and Az; denote the third order systems for
the temperature and the power; Aj; and Az; represent
the cross coupling matrices, which contain only one
non-zero term, appropriately located. The input matrix
B accounts for the actual delayed effect of the control
inputs on primary temperature and power, so only the
first row of B has non-zero elements. Similarly, the de-
lay between the control inputs and the disturbance can
be taken into account using only the third and sixth el-
ements of the disturbance input matrix I'. The second
row of the output matrix C adds memory to the axial
offset. Finally, the elements of D correspond to the di-
rect terms appearing in the axial offset and the power.
This results in a specific identification-oriented realiza-
tion with 18 parameters, instead of the 28 parameters
in the standard canonical form.

3.3 MIMO Identification

Similarly, the overall system (1)-(2) can also be mod-
eled by the transfer function:

ys(t) = Gy (8,9)v(t) + G4(0,9)d(t) (4)

where g denotes the standard forward shift operator
(the corresponding z operator will be omitted for sim-
plicity), and 6 represents the vector of free parameters
to be identified.

Given a description (4) properly parameterized by the
specific form (3) and the input-output data v, y; and d,
the prediction error e is computed as follows:

e(t) = ys(t) - Gv(8,9)v(t) ~ Ga(0,q)d (1)

For multi-output systems, the identification method
consists in determining the parameter estimates by min-
imizing the following quadratic criterion:

A . 1 &
0 = arg min det [ﬁ > e(t)eT(t)J

i=1

using an iterative Gauss-Newton algorithm [3].

3.4 Validation and Results

Finally, to check the ability of the identified model
to predict the behavior of the physical system around
a specific operating point, the model was validated on
a different data set from the one with which it was es-
timated. Such a procedure was successful over a large
operating range due to the static inversion performed
at the plant input. In particular, the specific form used
for the parameterization was validated.

The time-domain responses of the identified model
obtained around 50%P, (dashed) are plotted against the
experimental data (continuous) in Figure 3. The inputs
v1 (continuous), v> (dashed) and d (dotted) are plotted in
the right lower diagram in Figure 3. The step-responses
of the identified models obtained around 50%Pn, 90%Py,
and 99%P,, called Go, G, and G, respectively, are
shown in Figure 4.

0 200 400 600 800

AO
vpvad

Figure 3: Experimental Data versus Time-domain re-
sponses of Gy

4 Control Design

The controller is designed using an . methodology.
H. synthesis is aimed at disturbance rejection. A track-
ing problem such as the PWR can be cast as disturbance
rejection by rejecting the low frequency components of
the error between plant output and the reference. As
the synthesis is in continuous time, the weighting func-
tions are specified in continuous time as well. Then the
discrete time . controller is obtained using the bilin-
ear transformation.

4.1 Design Model

From a design point of view, lower order plant models
result in lower order controllers, as most popular opti-
mal control strategies (LQG, H>, H..) yield controllers
with state dimension equal to that of the open-loop
plant. It is often desirable to obtain a reduced order
model as an approximation of the high order model, in
the present case the sixth order MIMO model. A bal-
anced realization technique (Moore [4]), including spec-
ified model reduction weightings, is used [5].

In particular, dynamic behavior at high frequencies
can be considered uncertainty. Therefore, the measure-
ments are weighted with low-pass filters to attenuate
the high frequency dynamics. Finally, the reduced or-
der model is obtained by truncating weakly controllable
and observable states. The resulting MIMO reduced or-
der plant model is first order, i.e., only the dominant
mode is retained.

The nominal reduced order plant model is the de-
sign model Gy while the nominal p]ant model is G 0.
Figure 4 shows the step-responses of Go in continuous
lines against those corresponding to Gy in dotted lmes
For purposes of comparison, those corresponding to Gl
(dashed) and G2 (mixed) are plotted on the same graphs.

Due to the lower order approximation, model inac-
curacy is unavoidable. As the high frequency dynam-
ics are no longer modeled, there is a significant differ-
ence between the identified model and the reduced or-
dermodel. Figure 5 shows the Bode plots corresponding
to the multiplicative-errors relating the design model G,
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to Go (continuous), G; (dotted) and G (dashed), respec-
tively.

™ Pl AO
0.4,
8 2 \w
s |z . -
//.‘ of - e 0.2 :
K} 200 400 0 200 400 ) 200 400

N [ O e

-1 -1 .
[} 200 400 [} 200 400 - 20 200 400

Figure 4: Step-responses of Go, Go, G; and G»

4.2 Uncertainty Description

As the controller must stabilize the actual plant, the
robust control design methodology should take the dis-
crepancy between model and reality into account. A
standard approach is to design a controller stabilizing
the nominal model in the presence of modeling errors.

A multiplicative-error is used to provide a description
of the plant mismatch as well as a characterization of

robust stability.
Consider the identified plant model (4) and rewrite it
as follows:
(Yl(t))_(va Gm)(V(t)) 5
»2(0) ) =\ Gy Gaa )\ d(0) )
D ——

Go

where y1 denotes the controlled outputs and y» is an
auxiliary output:

1 ® = (160 )and y2(t) = Prct

The plant model description corresponding to the iden-
tified model Gy is obtained by replacing G with G in (5).

Given a nominal model G, as well as the weighting
function W,,, the multiplicative model set is defined as:

Z(Grv,Wm) = {Giv + AmWm) | Amstable, |Amlle < 1}
where |||l = maxy, T(-).
The Robust Stability criterion is defined as follows:
H}(in W Tilleo (6)

where T; is the plant input complementary sensitivity
function, W, is the multiplicative uncertainty weight
specifying the amount of uncertainty in the model as
a function of frequency, and K represents a stabilizing
controller.

In the present case, the uncertainty weight is of the
form Wy, = win I, where wy, is a stable minimum-phase
scalar valued function and has a large magnitude in the

frequency range where the modeling error is too large;
wp is chosen as follows:
» In the frequency range where known dynamics
have been neglected,

Wil 2 IGTH(Grv — Gi) I %)

where ||.|l2 = T(.) denotes the maximum singular
value of a matrix. Outside the frequency range of
the experiment, |wp,| is large to account for unmod-
elled dynamics.
In the frequency range where the model is accurate,
|wm| is chosen to account for nonlinearities in the
physical plant.

Figure 5 shows w;, (continuous) and the relative mod-
eling errors (7) relating Go to Go (continuous), G, (dot-
ted) and G (dashed), respectively.

Figure 5: Uncertainty - Performance Weights and Rela-
tive errors relating Go to Gg, G1, G2, respectively.

4.3 Performance Specifications

Consider the generalized system depicted in Figure 6.
Note the design model includes the actuator dynamics,
modeled by two integrators; the vertical positions of the
control rods are measured.

The selection of w and z is based on performance re-
quirements: the exogenous input w contains a distur-
bance input dist on the output, a perturbation pert on
the control and the actual disturbance d, whereas the
error signals z are weighted outputs.

dist
N fe———— d }W¥
s

4w la G |, pert

z{ - e Act u

~ W, [*

y{l3FT——

Figure 6: Generalized Model P

The Nominal Performance criterion is defined as fol-
lows:
n}(inIIWp Solle (8)
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where S, denotes the plant output sensitivity function
and the weighting matrix W), reflecting the performance
specifications is given as follows:

w2
Wy =
0 Wg

The main control objective is to reject the distur-
bances on the temperature and to track the reference,
noted T,.s. Note the reference is the first component of
dist. Thus, the weighting function w; on the tracking
error needs to be an integral action to provide a zero
steady-state error and a rejection of stepwise distur-
bances on the temperature. Figure 5 shows the perfor-
mance weight w; in mixed lines.

As a second objective, the control strategy should
minimize the effect of the control on the axial offset.
A constant weight w; is introduced on the axial offset.
Then, the use of u; is preferred as it has more authority
at low power and results in lower axial offset.

To limit the magnitude of the positions of the control
rods, two constant weights are used, in particular wy
and ws are chosen to be equal.

4.4 %, Control Design

Consider the standard feedback system shown in Fig-
ure 7, where X is the controller and P is the generalized
plant. The objective is to minimize over all frequencies
the maximal energy captured by the closed-loop trans-
fer function from exogenous inputs w to the error signal
z. This transfer function is also referred as the lower
linear fractional transformation and commonly noted
Fi(P,K). The synthesis problem involves finding a con-
troller K such that performance requirements are satis-
fied under prescribed uncertainties.

Figure 7: Feedback Interconnection of P and K

For the H,, optimal problem, the objective is to find
a stabilizing controller K which minimizes ||F;(P,K)||c.
Thus, find a controller K such that

Fi(P,K)lle <y 9)

where 1 is the minimum norm of the perturbation that

destabilizes the closed-loop system. The minimization
is carried out iteratively and is known as y-iterations [6].

4.5 Robustness Analysis

The % designis analyzed with respect to structured
uncertainty using g [7]. The upper and lower bounds
for u are calculated on the 7x7 closed-loop response of
Fi(P,K) using the following structure:

A
A=H '"Ap]:Amecz"?,A,,es,,}
and
s,,={[A‘ A2]:A16C3"3, AZECM}

where the Ap,, and A, blocks consist of an uncertainty
block and two performance blocks, respectively.

The bounds for u are plotted in Figure 8 in contin-
uous lines (they lie on top of one another) along with
the maximum singular value in dotted lines. Further-
more, the maximum singular values for robust stability
(dashed) and nominal performance (mixed) as defined
in (6) and (8) are shown in the same plot.

Figure 8: p bounds and Maximum Singular Values for
Robust Stability-Nominal Performance

Since the system has fewer degrees of freedom than
inputs, it is only possible to minimize the axial offset,
not reject it.

4.6 Simulation Results

Figure 9 shows the step-responses of the control sys-
tem. lnput—outpyt signals corresponding to the nomi-
nal plant model Gy are plotted in continuous lines while
tPose resulting from the perturbed plant models G, and
G are displayed in dashed and dotted lines, respec-
tively. The external signals are plotted in mixed lines.
Note that both control signals are shown in the same
plot (the “smallest” one in magnitude is u;).

The results show that the nominal performance is
achieved at 50%Pn. Then, as the power is increased,
the performance on the axial offset is relaxed; close to
the nominal power the specifications are no longer satis-
fied. This type of behavior is typical on the actual plant.
It emphasizes the necessity of a nonlinear controller or
a gain scheduled controller to recover the performances
in a wider operating range. Indeed, these results need
to be validated on the simulator. Unfortunately, at the
time of this study, it was not possible to test the con-
troller on it.
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Figure 9: Closed-loop responses of éo, @1 and G,

5 Conclusion

The purpose of this study was to assess the effective-
ness of an #,, controller based on a low-order model to
control a pressurized water reactor. Of particular im-
portance, the physical system was identified from ex-
perimental data using a MIMO identification-oriented
state-space realization. The resulting model has been
reduced using a frequency-weighted balanced realiza-
tion technique. An attractive feature of the methodol-
ogy is that the unmodelled dynamics of the actual sys-
tem are explicitly addressed in the controller design.

The linear simulations of the closed-loop system in
the presence of modeling errors demonstrate that ro-
bust performance is almost achieved up to 90%P,. As
the actual plant is highly nonlinear close to the nom-
inal power, a nonlinear controller or a gain scheduled
controller is required. Finally, while these results are
promising, they need to be validated on a realistic non-
linear simulator.
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