
An algorithm for baseline correction of MALDI mass spectra 
Betsy Williams*† Shannon Cornett‡ Anna Crecelius‡  Richard Caprioli‡   

Benoit Dawant†  Bobby Bodenheimer†  
 

†Department of Computer Science, Vanderbilt University, Box 1679 Station B, Nashville, Tennessee 37235 USA 
‡Department of Biochemistry, Vanderbilt University Medical Center, 607 Light Hall, Nashville, Tennessee 37232 USA  

ABSTRACT 
Visualization and differentiation of proteins in tissue are problems 
of increasing interest in computational systems biology, 
bioinformatics, and image processing.  A platform for generating 
such proteomic information is matrix-assisted laser desorption 
ionization mass spectrometry (MALDI-MS). In imaging MALDI-
MS, spatial information and protein expression can be created. 
However, data from imaging MALDI-MS spectra require 
considerable signal processing to generate quantitative results and 
to provide input to later classification algorithms.  To compare 
MALDI-MS spectra at different spatial locations (sample-to-
sample comparisons) or classify parts of the spectra, a processing 
step called baseline correction is essential. This paper reports a 
robust algorithm for computing the baseline correction of 
MALDI-MS spectra. The algorithm requires few user inputs and 
is suitable for automatically processing a large number of spectra, 
as is the case when generating images. The results of our 
algorithm are validated on a dataset of spectra available for 
comparison purposes. 
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1. INTRODUCTION AND  BACKGROUND 
This paper reports an algorithm for the processing of Matrix 
Assisted Laser Desorption Ionization Mass Spectrometry 
(MALDI-MS) spectra.  MALDI-MS allows direct measurement of 
the proteins within a biological tissue. Imaging MALDI-MS is a 
technique used to visualize the distribution of proteins within a 
tissue sample, and holds the promise, for example, of being able 
to differentiate tumors from normal tissue through the expression 
of proteins within these tissues [1]. 
 
MALDI-MS works, in brief, as follows. A chemical ``matrix'' is 
added to a biological tissues and allowed to crystallize.  Caught 
within the crystalline structure of the matrix are large mass 
biomolecules, e.g., proteins and peptides. The sample is then 
bombarded with laser pulses, causing the matrix to vaporize and 

 
 

 
Figure 1.  Example of MALDI MS mass spectrum before baseline 
correction from a sample of mouse brain.  The red line is the baseline 
calculated by our algorithm. 

 
Figure 2.  Example of MALDI MS mass spectrum after baseline 
correction using the baseline correction routine in the Data Explorer 
software.  The overall intensity has decreased in low mass to charge 
ranges, but the spectrum seems to rise in the high mass to charge 
ranges.   
  
the proteins and peptides within the tissue to ionize. The ions, 
now in gaseous phase, are accelerated in an electric field and their 
mass calculated by a detector based on time of flight. The 
resulting time of flight calculations produce a spectrum of mass 
distribution of ions within the sample.  
 
Spectra resulting from the MALDI MS ionization process are 
noisy, as seen in the unprocessed mass spectrum in Figure 1.  
Large variations in intensity, even within the same tissue sample, 
make the quantification of the spectra difficult.  This variance can 
be attributed to a number of factors, such as differences in 
application of the matrix and limitations in the detector [2][3]. 
One of the artifacts affecting the spectra is the baseline, which 
affects both the peak detection algorithms and sample-to-sample 
comparisons.  The baseline is a mass-to-charge dependent offset 
on which the information-bearing component of the spectra is 
superimposed.  Figure 1, which illustrates a typical MALDI MS 
spectrum, shows that the baseline appears as an exponential that 
decays with mass-to-charge value, also denoted m/z.  The baseline 
hampers quantitative comparison of spectra and is an impediment 
to generating 2D and 3D MALDI images [1][4]. 

 

 
Once spectra are corrected, we can begin to work on classification 
and segmentation algorithms that allow differentiation of 
cancerous and non-cancerous material. We can employ algorithms 
from machine learning, image processing, and scientific 
visualization to allow automatic results that operate quantitatively 
to perform this differentiation.  Correcting the baseline is 



therefore an important pre-processing component in the analysis 
of spectra.  Several algorithms have been proposed for baseline 
correction, and some of them are provided by the manufacturers 
of MALDI MS instruments. However, in our experience, they 
suffer from a number of weaknesses. For example, Figure 2 shows 
the spectrum of Figure 1 after baseline removal with Data 
Explorer [5]. After correction, a residual baseline can still be 
observed in the low mass to charge ranges as well as an upward 
trend in the high mass to charge range. 
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Recently, Liu et al. have proposed an approach in which they first 
smooth the spectrum using a moving average to eliminate noise 
[6]. They then define the baseline as the convex hull of the 
smoothed spectrum. In contrast, our algorithm computes the 
baseline from the raw spectrum.  Depending on the filter 
parameters and the spectrum, this technique may produce a 
baseline that is too low.  Wagner et al. characterize the variation 
of the MALDI spectrum as near-exponential decay [7]. They then 
iteratively apply a local linear regression technique and vary 
smoothness based on the mass to charge ratio.  This technique has 
the disadvantage that the smoothness parameters must be set 
specifically for each spectrum.  It may also result in a baseline 
that subtracts an unacceptable amount from broad peaks in the 
spectrum. 
 
2. EXPERIMENTAL PROCEDURE 
In this section we present the baseline correction algorithm. First, 
we briefly show how the algorithm works on an example 
spectrum in Section 2.1.  Then we discuss the specifics of the 
algorithm in two parts.  Section 2.2 presents an algorithm that 
finds where useful quantitative data in the spectrum begins, which 
is the starting point for our baseline correction algorithm.  Section 
2.3 presents the main part of our baseline correction algorithm.  
The idea is to divide the spectrum into local areas, and then divide 
the local areas into windows.  We then find the minima in these 
windows.  The size of the local area adaptively changes to insure 
that minima lying on peaks are not selected.  The baseline is then 
defined as a function approximating the set of minima. Since the 
baseline varies throughout the spectrum, a window-based 
algorithm allows the creation of a baseline locally fitted to the 
spectrum. Figures 3 and 4 show two separate MALDI MS images 
of a male C57Bl/6J mouse brain created by averaging over a mass 
to charge ranges 7050.24 to 7098.09, and 13875.7 to 14516, 
respectively.  The pixel colors are assigned linearly based upon 
ion count, using a blue-cyan-yellow-red color scale.  Dark blue 
represents the lowest intensity and red represents highest.  Within 
the figures, the image on the left is computed using MALDI data 
that has not been baseline corrected, and the image on the right 
was constructed after baseline correction. 
 

2.1 Spectrum Example 
In this section we discuss how the baseline program works for a 
section of a spectrum from our dataset.  As mentioned previously, 
the baseline program operates on the spectrum locally by dividing 
a local area into windows and fitting a polynomial through local 
median points. The local area adaptively expands if it contains 
medians lying on peaks, i.e., too many medians above the fitted 
polynomial.  For this example, we started with a local area of 
1000 at a mass to charge ratio of 20,200.  Figure 5 shows the 
initial local area of the algorithm highlighted in red.  The local 
area is divided into 20 windows and the medians in each of these 
windows are chosen as candidate baseline points as shown in 
Figure 6.   After  selecting  these  local  medians, a  polynomial  is  

 
 Figure 3. MALDI MS image of a male mouse brain created by 
averaging over a mass to charge range in each of the spectra in the 
dataset.  The pixel colors are assigned linearly based upon ion count,  
using a blue-cyan-yellow-red color scale.  Dark blue represents the 
lowest intensity and red represents highest.  The image on the left is 
computed using MALDI data that has not been baseline corrected, 
and the image on the right was constructed after baseline correction  
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Figure 4.  MALDI MS image of a mouse brain created by averaging 
over a different mass to charge in each of the spectra in the dataset.  
This range includes a mass of a singly charged myelin basic protein.  
The pixel colors are assigned linearly based upon ion count,  using a 
blue-cyan-yellow-red color scale.  Dark blue represents the lowest 
intensity and red represents highest.  The image on the left is 
computed using MALDI data that has not been baseline corrected, 
and the image on the right was constructed after baseline correction.  
 
fitted through the points.  The polynomial resulting from the first 
iteration of this program is shown in Figure 7 and Figure 8.   The 
polynomial is too high, which is a result of too many local 
medians lying above the polynomial.  To remedy this situation, 
the local area is increased until a percentage of the local medians 
are below the polynomial or lie with in a distance epsilon from the 
polynomial.  Figure 9 shows an intermediate result of the 
algorithm.  The local area no longer expands when enough 
medians are found that are less than distance epsilon above the 
polynomial.   Medians that lie above distance epsilon from the 
polynomial are discarded.   The remaining median points are 
added to a  list  of  baseline  points.   The calculated baseline is 
shown in Figure 10.  The algorithm then proceeds through the rest 
of the spectrum in a similar manner. 
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2.2 Finding the Offset 
Since the low mass to charge ranges of the spectra are populated 
with chemical noise, the area is considered noise.   Typically a 
spectrum will begin with an ion count of zero, then increase in 
intensity before beginning to decrease again. Useful quantitative 
data begins roughly in the middle of the initial rise and fall of the 
spectrum, or the first area of highest intensity.  We present an 
algorithm that finds this mass to charge value, a marker that 
indicates where we start dividing our spectrum into local areas 
and extracting the minima used to find our baseline function.  The 
only input into this algorithm is the window width, w.  The 
starting point is found using the following algorithm:       

1. Define a window size of fixed width, w.  This w m/z 
wide window will be stepped across our spectrum.  In 
our results we have found that a window value of 1000 
mass to charge values works well, since it is large 
enough to average out noise in the signal.    

2. Initialize the location of the first mass to charge value in 
the window, w_loc spectrum to the beginning of 
spectrum. 

3. Set current intensity, curr_int equal to the average 
intensity of mass to charge values in this beginning 
window. 

4. Move the window w mass to charge values, 
w_loc=w_loc+w. 

5. Set previous intensity, prev_int, equal to the current 
intensity, curr_int. Set current intensity, curr_int, equal 
to the average intensity of the window. 

6. Repeat steps 4 and 5 until prev_int > curr_int. 
 

Now we have found an area where the window of highest mass to 
charge value exists.  We next move the window one mass to 
charge value at a time to find the window with the highest 
average.   

7. Define the area to search for the window of highest 
mass to charge intensity, startsearch=w_loc-2*w, and 
endsearch=w_loc. 

8. Create a new window of width w, and start it at the 
location startsearch. 

9. Move the window one mass to charge value and 
continually calculate the average until window reaches 
endsearch. Update the location of the window of 
highest average. 

10. Calculate the median of the window of highest average 
and use it as the starting point for our baseline 
algorithm. 

 

2.3 Calculating the baseline 
A baseline should not remove peak information from the 
spectrum.  Suppose that a spectrum is divided up into windows of 
fixed width, and one point is selected from each window using a 
constraint such as the median.  The baseline is defined as the 
function that best approximates these set of points.  Problems 
arise when the windows that divide the spectrum lie on peaks. The 
resulting baseline will be too high in areas where points chosen to 
calculate the baseline are located on peak information.  To 
overcome this problem, we employ an adaptively expanding 
window.  The window expands according to mass to charge 
ranges. Therefore, the number of data points in a window can vary 
since the number of data points as a function of the mass to charge 
values is not linear.  The inputs to the algorithm are the local area, 

 
Figure 5. A sample area of spectrum taken from our sample dataset.  
This figure shows the initial local area chosen by the algorithm. 

 
Figure 6. View of the red highlighted local area of Figure 5.  The 
vertical lines represent the division of the local area into windows.  In 
each window a median is selected and shown with a red asterisk. 

 
Figure 7. After picking the medians within the windows, a polynomial, 
shown in black, is fitted through the data.  Medians greater than 
epsilon above the polynomial are shown in green, the rest are shown 
in red. 
 
 

Figure 8. This figure shows the polynomial in black fitted through the 
medians of the first iteration (same as figure 5).  This figure shows 
what a small portion of the spectrum after the local area looks like. 



 
Figure 9.  This is an intermediate result of the algorithm.  The local 
area has expanded, but there are still too many median points more 
than epsilon above the polynomial.  Median points epsilon above the 
polynomial are shown in green, the rest are shown in red. 

Figure 10.  This figure shows the resulting baseline in red.  The 
baseline is calculated from the “kept” medians. 
 
 
 
 init_loc_area, and number of windows, num_wind. The 
algorithm is as follows: 

1.  Set the local area, loc_area, equal to initial local area 
size, init_loc_size. The local area is a range that is as 
small as possible under the criteria of Step 5 below, but 
which does not lie with in the spread of a single peak.  
In our experiments, init_loc_size was set to 1000.  In 
our experience, a local size of 1000 works well and 
represents a reasonable tradeoff between precision and 
speed.  

2. Define local window size, loc_wind, equal to loc_area 
divided by the number of windows, num_wind.  This 
allows us to divide the local area into num_wind 
windows. In our results, we set the number of windows, 
num_wind, equal to 20.    

3. Divide the local area into num_wind windows of width 
loc_wind.  Extract the mass to charge value, x, and the 
intensity, y, of the medians in the window, , 
where i=1:num_wind. 

),( ii yx

4. Fit a fourth order polynomial, P, to the medians using a 
least squares technique to solve a system of linear 
equations at the points .  A fourth order 
polynomial is a compromise between computational 
speed and smoothness. 

),( ii yx

5. Let , i.e., the values of the polynomial P 
at i .   Count the number of points at which i - i >

)('
ii xPy =

x y y' ε , 
i.e., count the number of medians computed in Step 3 
that are above the polynomial by a pre-computed 
tolerance ε .  The value of ε is not of great bearing; we 
used 5% away from the fitted polynomial. 

a. If the counted number of points exceeds 25% 
of the total number of points in that local area 
(num_wind), then discard all of the median 
points found in the local area. Increase the 
size of the local area by init_loc_size and start 

again at Step 2.  The local area will expand 
until less than 25% of the points lie distance 
ε above the locally fitted polynomial.   

b. Otherwise, add the median points less than 
distance ε  above the polynomial to the set of 
baseline points, and continue to Step 6.  

25% is used because it represents a value that ignores 
points lying on peaks without compromising speed. 

6. Reset the local_area to init_loc_size.  Move to the next 
local area.  Repeat steps 2 through 5 until the end of the 
spectrum is reached. 

7. Calculate the baseline of our spectrum by fitting an 
exponential of the form to the set of data 
points using a least squares technique.  This function is 
smooth and allows enough flexibility to fit through the 
data points. 

dxbx ceaey +=

If the end of the spectrum is reached the local area can still be 
expanded.  The only median points that a polynomial will be fit 
through are those lying on the spectrum,  i.e.,  less  points are used  

Figure 11.  The top spectrum shows mass spectrum with the baseline 
calculated by linear interpolation seen in red.  We see at the mass to 
charge value of around 15,000, the baseline rises up into the peak.  By 
having a baseline at this point, important peak information is lost 
after baseline subtraction as seen in the second spectrum. 
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Figure 12.  Example of spectrum shown in blue and the resulting 
baseline shown in red found by fitting polynomial through the 
minimum of a window. 

Figure 13.  The baseline resulting from fitting a polynomial through 
the medians is shown in red.  The black line is where our algorithm 
puts the baseline.  By comparison, our method preserves more peak 
information. 
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in the polynomial fitting calculation because not all of the local 
windows lie within the scope of the spectrum.  However, this is 
generally not a problem as there are few peaks lying in the high 
mass to charge ranges. 
 

3.  COMPARISON TO OTHER METHODS 
There are simpler methods for baseline correction found in 
practice, but not described in the literature.  We describe three of 
them here, with their shortcomings.  One method to determine a 
baseline is to linearly interpolate the local minima found in 
“windows” of a varying width in the spectrum.  The lower m/z 
values have smaller windows, and the larger m/z values have 
larger windows.  The varying window accounts for the greater 
variance found at the low m/z values.  The problem with this 
algorithm is that it produces a baseline that is not monotonic and 
smooth.  Moreover, subtracting the baseline found by this 
algorithm can sometimes cause the subtraction of important peak 
information as shown in Figure 11. 
 
Another method of baseline subtraction is to use the minima in 
window, fit a polynomial to the data instead of using linear 
interpolation. Figure 12 shows the results of this algorithm.  It 
produces a more desirable baseline because it is smooth, but fails 
to account for noise found in the spectra.  We desire a baseline 
that is smooth and discards some of the noise found in the 
spectrum. 
 
To correct for this noise, the medians can be used instead of using 
the minimum.   The results of this algorithm, as shown in Figure 
13, show a baseline that is smooth and subtracts noise found in the 
spectrum.  However, it sometimes subtracts important peak 
information from the spectrum.  For instance, if a window is 
directly on a peak, then the median point in the window will be on 
a peak.           
 

4.  RESULTS AND DISCUSSION 
 There is no published metric for establishing the correctness of 
baseline correction algorithm. To validate our algorithm, we 
prepared a canonical data set of twenty mass spectra (labeled A 
through T) representing spectra typically obtained from a MALDI 
MS device.   
 
Figures 14-19 show three spectra from our dataset before and after 
baseline correction.  Notice the intensity of the spectra in the 
figures.  Sample C in Figure 14, Sample E in Figure 16, and 
Sample G in Figure 18 have the respective maximum intensities 
of 1500, 3250, and 600.  Our baseline correction algorithm works 
well for all of these spectra, using the default parameters 
described previously. 
 
The calculated baseline in Figure 14 (sample spectrum C), shown 
in red, demonstrates how the algorithm preserves peak 
information, while subtracting some of the noise.  Note the 
baseline at the mass to charge values of approximately 10,000, 
27,000, and 42,000.  Peak information is preserved in these areas.   
Figure 15 shows spectrum C after baseline correction. 
 
Sample E in Figure 16 has a quickly decreasing baseline with a 
sharp turn in the low mass to charge range.  The algorithm is able 
to find this baseline while preserving all of the important peak 
data.   
 
Sample G in Figure 18 shows a spectrum that is quite noisy.  The 
algorithm is robust to this amount of noise and maintains the peak 

information found around the mass to charge ratio of about 
15,000.  The spectrum after baseline correction is shown in Figure 
19. 
 
The results for the full set of twenty spectra can be found at 
http://people.vanderbilt.edu/~betsy.williams/MALDI. Also 
available is the MATLAB code implementing this algorithm.  The 
baseline is typically computed in under 2 seconds using a spectra 
contains 70,000 points.  If faster performance is desired, the 
program be easily be coded in C. 
 

5.  CONCLUSION 
We have presented a general purpose baseline correction 
algorithm.  Our automatic algorithm is robust and only requires a 
few user inputs.  The algorithm works well if the user inputs are 
defined as the set of parameters discussed in this paper.   
 
The issue of how to judge the best algorithm is still open.  Visual 
inspection is commonly used.  In our work we calculated the 
baseline for spectra from a variety of tissue, and found that our 
algorithm worked well for all of the spectra. 
 
Our future work includes a better method of characterizing the 
noise underlying the MALDI MS process.  We would also like to 
improve the validation of the technique by calculating the 
spectrum on a wider variety of examples. 
 

6.  REFERENCES 
[1] Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM.  

Imaging mass spectrometry: A new technology for the 
analysis of protein expressions in mammalian tissues. Nat 
Med. 2001; 7: 493-496. 

[2] Bucknall M, Fung KYC, Duncan MW.  Practical quantitative 
biomedical applications of MALDI-TOF mass spectrometry.  
J Am Soc Mass Spectrom. 2002; 13: 1015-1027. 

[3] Krutchinsky AN, Chait BT.  On the nature of chemical noise 
in MALDI mass spectra. J Am Soc Mass Spectrom. 2002; 13: 
129-134. 

[4] Crecelius A, Cornett DS, Williams B, Bodenheimer B,  
Dawant B, Caprioli RM. Developing 3-D Imaging Mass 
Spectrometry. Proc of the 51st ASMS Conf on Mass 
Spectrom and Allied Topics. June 2003. 

[5] Data Explorer, Version 4.4, Applied Biosystems. 
[6] Liu Q, Krishnapuram B, Pratapa P, Liao X, Hartemink A, 

Carin L.  Identification of differentially expressed proteins 
using MALDI-TOF mass spectra.  Asilomar Conf on Signals, 
Systems and Computers.  November 2003. 

[7] Wagner M, Naik D, Pothen A.  Protocols for disease 
classification from mass spectrometry data.  Proteomics. 
2003; 3: 1692-1698. 

[8] Horn DM, Zubarev RA, McLafferty FW.  Automated 
reduction and interpretation of high resolution electrospray 
mass spectra of large molecules.  J Am Soc Mass Spectrom. 
2000; 11:  320-332. 

[9] Jarman, KH, Daly DS, Anderson KK,  Wahl KL.  A new 
approach to automated peak detection. Chemometrics and 
Intell Lab Sys. 2003; 69: 61-76. 

[10] Yanagisawa K, Shyr Y, Xu BJ, Massion, PP, Larsen PH, 
White BC, Roberts JR, Edgerton M, Gonzalez A, Nadaf S, 
Moore JH, Caprioli RM, Carbone DP. Proteomic patterns of 
tumour subsets in non-small-cell lung cancer. Lancet. 2003; 
362: 433-39. 

 
 

Betsy Williams
Checking out ACS style referencing book from library—no info on how to ref. on web

http://people.vanderbilt.edu/~betsy.williams/MALDI


 
Figure 14.  Sample C before baseline correction.   Figure 15.  Sample C after baseline correction.   Figure 16.  Sample E before baseline correction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 17.  Sample E after baseline correction.  Figure 18.  Sample G before baseline correction.     Figure 19.  Sample G after baseline correction. 
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